

DEPARTMENT OF chemical & biomolecular engineering

Self-Assembled Polyproline II Peptide Monolayers on Iron(III) Oxide

Chuck Loney, PI: Dr. Julie Renner

old title: Enhanced Electrochemical Ammonia Production via Peptide-Bound Metal

October 31st, 2018

2018 Annual AIChE Meeting – NH₃ Fuel Association

Pittsburgh, PA

Last Time: PPII Peptide on Fe₂O₃ to Synthesize NH₃ via Electrolysis

- Solid-state electrolyzer: PPII peptide on iron(III) oxide had quantifiable, 10X increase in ammonia compared to controls.
- Liquid electrolyzer: The PPII incubated Fe₂O₃ had consistently higher current densities than the control Fe₂O₃ nanoparticles.

20 mV/s; WE is C cloth, spraycoated; CE is graphite; RE is Ag/AgCl; 1 M NaOH; 50°C ²

Why Study PPII Peptide for NH₃ Production?

- Iron oxide is also useful for biomedical applications: cancer therapy, macromolecular delivery, & resonance imaging. *Theranostics* 2013, 3 (12), 986-1003; *Future Med Chem* 2010, 2 (3), 427-49.
- PPII helices have unique structures (no H-bonds; consistent length every 4 AAs) and are involved in self-assembly processes.

J. Mol. Biol. (2013) 425, 2100–2132

 While various peptide systems have been attached to iron oxide, none have attached PPII peptides specifically.

PPII Monolayer on Fe_2O_3 via QCM-D

- A monolayer of PPII peptide on the metal surface is calculated based on QCM-D measurements.
- Mass density and thickness measurements found to be 108 ± 22 ng/cm² and 1.08 ± 0.23 nm, respectively.
 - Leads to a packing density of 6.98 molecules AA / nm² iron oxide

100 μg/mL PPII peptide in solution; 150 μL/min; 18°C; composite Sauerbrey model (constant dissipation); hydrated protein density assumption

PPII Peptide: Stable in Heat; Stable Fe₂O₃ Bond in 10 mM KOH

- QCM-D measurements of peptide attachment onto Fe₂O₃, followed by a KOH step, imply the peptide is stably-bound onto the Fe₂O₃ sensor.
 - **DI Water** Volar Ellipcity*10⁻⁶ (deg*10⁻⁶*cm² *dmol⁻¹) 0 DI Water **DI Water** -2 Peptide 3 Rinse Rinse -4 Frequency Drop (Hz) Dissipation (ppm) -2 -6 -8 -10 10 mM -6 KOH $(\theta) \times 10^{-3}$ 2 20°C 30°C -14 -10 40°C -3 -16 (a) λ (nm) 50°C J. Mol. Biol. (2013) -12 -18 -4 425, 2100-2132 60°C -20 2500 5000 7500 10000 12500 15000 17500 20000 0 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 time (sec) Wavelength (nm)

100 µg/mL PPII peptide in solution; 150 µL/min; 18°C

150 μg/mL PPII peptide in solution; 200 nm/min; 5 accumulations

• Circular dichroism measurements up to 60°C depict peptide's PPII behavior is stable up until that point.

PPII Peptide Doesn't Affect N₂ Adsorption, but Does Affect Settling

 Brunauer–Emmett–Teller (BET) analysis determined that there is no significant difference of N₂ adsorption on the functionalized versus the bare Fe₂O₃ nanoparticles.

 Clearly distinct settling behaviors despite being at the same concentration.

Appx 200 mg Fe_2O_3 /run; degassed overnight with N_2 at 100°C; run overnight with liquid N_2

200 μ L of 1 mg/mL Fe₂O₃; PPII-functionlized Fe₂O₃ (left); bare Fe₂O₃ (right).

Conclusions

- PPII helices are interesting for ammonia generation as well as other applications related to the biomedical field.
- Well-packed PPII peptide SAMS on Fe_2O_3 surface (useful for control of surface).
- PPII peptide on Fe_2O_3 is stable in KOH (useful for electrochemistry applications).
- PPII peptide signature secondary structure is preserved at temperatures up to at least 60°C (useful for moderatetemperature electrochemical applications).
- N_2 adsorption sites are not blocked (useful for desired N_2 to NH_3 reduction).
- Dispersion of Fe_2O_3 in PPII-functionlized Fe_2O_3 solution (may be useful for biomedical applications).

Acknowledgements

Case Western Reserve University:

• Dr. Julie Renner

University of Arkansas:

- Dr. Lauren Greenlee
- David Suttmiller

Proton OnSite (now Nel)

DOE Research Grants:

- SBIR DE-SC0015956
- DOE BES DESC0016529

Supplemental: XPS

• We don't see Fe-O-Metal interaction via O1s (right), but C1s (below) implies such an interaction.

Table 1 | Binding energy (B.E.) of metal-O-C bonds in O 1s spectra

Metal-O bond	B.E. (eV)	Metal-O-C bond	B.E. (eV)	Refs.
Fe-O	530.3	Fe-O-C	531.7 533.0	28
Fe-O Ni-O Cu-O	529.8 529.3 530.5	Fe-O-C Ni-O-C Cu-O-C	531.2 530.2 532.8	This work 32 34

Zubir *et al.* SCIENTIFIC REPORTS | 4 : 4594 | DOI: 10.1038/ srep04594

Step size 0.2 eV for O1s and 0.1 eV for C1s

Supplemental: FTIR

"...the characteristic vibrations of the carboxylic groups are located at 1410 and 1580 cm⁻¹, which are assigned to the symmetric and asymmetric COO– stretching. The difference between these two peaks is about 170 cm⁻¹, implying a bridging structure between the surface iron ions and carboxylic groups" H. Qu et al. / Inorganica Chimica Acta 389 (2012) 60–65

8.000 cm⁻¹ resolution; 2000 scans; ZnSe polarizer at 90°; Veemax III accessory at 80°

Supplemental: PPII Monolayer Calculation for on Fe₂O₃ via QCM-D

Coverage: $(108 ng/cm^2) * (10^-7 cm/nm)^2 * (1 nmol/1211.33 ng) * (10^-9 mol/nmol) * (6.022*10^23 peptides/1 mol)=0.537 peptides/nm^2 or 1.86 nm^2 / peptide$

Total peptide #: (0.537 *peptide/nm*²)*(0.7*cm*²)*(10⁷ *nm*/1*cm*)² **π*=**8.27*****10**¹**13** *peptides/ Fe*2*O*3 *QCM Sensor*

Theortical peptide $\#=(SAfe_{203}/SApeptide)=[(0.7 cm)^{12} * (10^{17} cm)^{12} * \pi]/[13* (0.35nm)^{12}]=9.67*10^{13} peptide/Fe_{203} QCM sensor$

Supplemental: Overnight QCM-D, KOH Run

