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Motivation: Small-Scale Renewable Power to Ammonia
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§  Small-scale, distributed for transportation reduction, easier use of renewables
§  Wind-powered Haber-Bosch in Morris, MN1

§  Solar power: Raphael Schmuecker Memorial Farm in Iowa2

§  Optimization of design and operation3-5

[1] Reese et. al, Ind. Eng. Chem. Res. 2016, 55, 3742-3750.
[2] Schmuecker, 11th Annual Ammonia Fuel Conference, 2014. 
[3] Beerbuhl et. al, Eur. J. Oper. Res. 2015, 241, 851-862. 

[4] Sanchez and Martin, J. Clean. Prod. 2018, 178, 325-342.
[5] Allman et al, AIChE J., 2018, Accepted, DOI: 10.1002/aic.16434.

Loss of economies of scale: High capital cost
Energy storage needed: batteries too expensive



Lowering Capital Cost: Absorbent Enhanced Synthesis

2

§  Absorption instead of condensation1

§  Lower pressure and less heat exchange (temperature difference)
§  Lower capital cost than conventional process, especially at small scale2

[1] Malmali et al, Ind. Eng. Chem. Res., 2016, 55, 33, 8922-8932.
[2] Palys et al, Processes, 2018, 6, 7, 91.

Haber Process Absorbent Enhanced Process



Distributed Sustainable Energy Agriculture (DSEA) System
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1.  Ammonia and hydrogen as local energy storage media
2.  Ammonia for sustainable agriculture: fertilizer, grain drying and tractor fuel
3.  Collocated with local electrical load
4.  Predictable and consistent power export for revenue and grid sustainability



How should we design the DSEA system?

4

§  Economics: Lowest possible cost 
§  Operation of system is time varying

•  Hourly (or less) and seasonal
§  System design and time varying operating schedule are coupled

•  Difficult to design using intuition, rules of thumb



How should we design the DSEA system?

4

§  Economics: Lowest possible cost 
§  Operation of system is time varying

•  Hourly (or less) and seasonal
§  System design and time varying operating schedule are coupled

•  Difficult to design using intuition, rules of thumb

This Work: Combined Design-Scheduling Optimization



Optimal Combined Design and Scheduling of DSEA
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Objective: Minimize sum of annualized capital and operating costs minus revenue 
from power sales 

•  Design decisions: Selection and size of process units (made once)
•  Operating decisions: Unit production rates, flows of mass and energy (made for 

each operating period)



Optimal Combined Design and Scheduling of DSEA
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Objective: Minimize sum of annualized capital and operating costs minus revenue 
from power sales 

•  Design decisions: Selection and size of process units (made once)
•  Operating decisions: Unit production rates, flows of mass and energy (made for 

each operating period)

Constraints: 
•  Seasonal ammonia demand 
•  Power balance (hourly)
•  Power sale regulation
•  Inventory balances for storage units
•  Unit operating constraints: relates design and operation



WCROC-UMM Morris Case Study
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§  Two 1.65 MW wind turbines in Morris
§  Ammonia for WCROC farm, approximately 40 ton/year 

•  280 acres corn, 116 acres soy
§  UMM Campus electrical load (annual average of 985 kWh)

 

[1] Tallaksen et al, Life Cycle Assessment and Cropping Energy Audits for IREE Project RL-0016-13, 2017.

WCROC-UMM Excess Power GenerationWCROC Agricultural 
Ammonia Demands1



Fixed Power Sale Prices1

WCROC-UMM Morris Case Study

6

§  Two 1.65 MW wind turbines in Morris
§  Ammonia for WCROC farm, approximately 40 ton/year 

•  280 acres corn, 116 acres soy
§  UMM Campus electrical load (annual average of 985 kWh)
§  Fixed power sale over three periods

[1] Xcel Energy, Minnesota Commercial and Industrial Electric Prices, 2018.



Results: DSEA Optimal Economics
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§  Net Present Cost: $97,000/year 
•  4.6 MM$ capital investment
•  $310,000/year profit from power sales

§  Saves annually: ~$37,000/year
•  15.4 tons of purchased ammonia fertilizer ($650/ton1)
•  276,000 ft3 of natural gas ($3.20/thousand cu. ft2)
•  2200 gal of diesel ($7.60/gal3)

Approximate annual cost: $60,000/year
 

[1] U.S. Department of Agriculture, Anhydrous Ammonia Prices by Month from 2009 to 2018, 2018. 
[2] U.S. Energy Information Administration, Minnesota Commercial Natural Gas Prices, 2018. 
[3] U.S. Energy Information Administration, Midwest Diesel Retail Prices, 2018.



Results: DSEA Optimal Design
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§  No battery ←		too expensive
§  Annual average production levels (capacity fraction)

•  Synthesis: 83% 
•  PSA: 74% ← nitrogen buffer storage
•  Electrolysis: 47% ← flexible production, significant for energy storage

 



Results: DSEA Optimal Schedule
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§  Hydrogen: main method of energy storage
§  Ammonia: storage evolves more slowly, used only during critical periods
§  Tradeoff between overall energy efficiency (H2) and storage cost (NH3)

Chemical Storage ScheduleControllable Generation Schedule



Conclusions
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§  A new vision for sustainable agriculture and energy supply, facilitated by ammonia

§  Renewable power with hydrogen and ammonia as local energy storage for:
•  Ammonia as fertilizer, tractor fuel, grain drying
•  Local electrical power demands
•  Predictable and consistent power export to utility

§  Simultaneous optimization of design and schedule
•  First attempt to take advantage of synergies: Annual cost of ~$60,000/year
•  Both hydrogen and ammonia used as energy storage 
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WCROC-UMM Morris Case Study Data
§  Candidate units:

•  Electrolysis: 50 kWh/kgH2

•  PSA: 1.6 kWh/kgN2
•  Absorbent enhanced synthesis: 3.1 kWh/kgNH3

•  Battery: $600/kWh
•  Chemical storage: $50/kWh H2, $3.25/kWh NH3
•  Hydrogen fuel cell: 60% LHV efficiency
•  Ammonia genset: 30% LHV efficiency



DSEA Optimization: Sensitivity Analysis


