

DEPARTMENT OF chemical & biomolecular engineering

Exploring Peptide-Bound Catalysts for Electrochemical Ammonia Generation

Charles Loney, Ashely Graybill, Cheyan Xu, Prashant Acharya, David Suttmiller, Luke Wiles, Kathy Ayers, Wayne Gellett, Lauren F. Greenlee, and Julie N. Renner

November 2nd, 2017 2017 Annual AIChE Meeting Minneapolis, MN

Vision for Electrochemical Ammonia Production

<image>

- Electrically driven process for low temp/pressure/emissions
- Compatible with intermittent operation

Interface, Summer 2015.

• High regional demand for fertilizer co-located with renewables

AEM-based Approach

Ligands

- AEM enables wider range of efficient catalysts vs. PEM
- Lower cost materials of construction in alkaline environment

Ammonia Generation Testbed

- Design reviewed by senior engineers
- Acid trap to collect ammonia

Increasing ammonia concentration

Key Issues Solved:

- Sources of non-electrochemically generated NH₃ can and have clouded results
- Added robust controls (argon gas), careful sample prep

Sustainable Ammonia Synthesis. Roundtable discussion sponsored by DOE BES held on 2-18-16. <u>http://science.energy.gov/~/media/bes/csgb/pdf/docs/2016/NH3_Report</u>.

Strategies for Increasing Efficiency

 Qualitative model suggests limiting active sites being taken up by recombination of H+ and e–
A. R. Singh, et al., Acs Catalysis, 7, (2017).

Biological Strategies

 $8H^+ + 8e^- + N_2 + 16 \text{ ATP}$

 $2NH_3 + H_2 + 16 ADP + 16 P_i$

Enzyme Part	Function	
FeMo- cofactor	Catalyzes reduction of nitrogen to ammonia	β
Fe ₄ S ₄ , F-cluster	Facilitates hydrolysis of ATP and electron transfer	$\begin{array}{c} 2 \text{ ATP} \\ 2 \text{ ADP} \\ 2 \text{ P}_{i} \end{array} \xrightarrow{\text{ATP}} 4 \text{Fe-4S} \text{ P} \xrightarrow{\text{e}^{-}} 2 \text{NH}_{3} \end{array}$
Fe ₈ S ₇ , P-clusters	Transfer the electrons from the Fe-protein to the FeMo-cofactor	ATP FeMo-co N₂ Fe Protein MoFe Protein
Water chain	Limits water interacting with FeMo-co	L. C. Seefeldt <i>, et al.</i> Curr Opin Chem Biol, 16 (2012).

- Operates at mild conditions
- 75% of electrons are utilized for NH₃ production
- Controls electron and proton transfer
- TOF ~ 2 NH₃/s, 10 mA/cm² requires ~3 mg/cm² (reasonable)

Hybrid Approach

- Peptides designed for:
 - Nanoparticle formation more active catalyst
 - Reaction control nitrogenase mimics for efficiency

Peptide Control of Nanoparticle Formation

Composition

	Weight %		
	Fe	0	
Peptide A	86%	14%	
Peptide B	86%	14%	
Peptide C	83%	17%	
Peptide D	44%	56%	

 Peptide ligands can be used to control Fe nanoparticle composition and morphology

Morphology and Phase

Peptide Binding and Gas Adsorption

Sample	Peptide Loading (% mass)
Peptide 1	8.90 ± 0.03
Peptide 1	
(Double Loaded)	16.51 ± 0.01
Peptide 2	8.94 ± 0.03
Peptide 3	8.87 ± 0.07
Peptide 4	9.91 ± 0.06

- Repeatable and controllable peptide binding to commercial nanoparticles
- Nitrogen gas adsorption isotherms statistically similar
 - Importantly not blocking nitrogen
 - BET surface area ~16 m²/g

Secondary Structure Analysis

- Peptide structure is heat stable
- Peptide structure maintains binding to the iron (III) oxide nanoparticles

Peptide Effect on Ammonia Production

- >10X increase in ammonia production rate
- >10X increase in current efficiency
- Repeatable results, with argon control

Conditions: 3 hour of operation at -2.5 V, IrOx counter electrode, 50°C

Aqueous Separated Cell

- Repeating studies done at Proton OnSite
- Ammonia assay used to analyze ammonia in acid trap and electrolyte

Preliminary Results

- Current efficiency ~1% for peptide subtracting Ar
- Still see an enhancement with the peptide
- Working on contamination issues and labeled controls

Conditions: 6 hour of operation at -2.0 V (vs. Ag/AgCI), Pt counter electrode, 25°C¹³

Conclusions and Future Work

Conclusions

- AEM-based electrochemical systems are a promising
 - Ammonia production is shown above Ar controls with non-noble metals in multiple systems
 - Careful experimental set up and protocol is important
- Biologically inspired catalyst approaches are promising
 - Increased production rates and efficiency 10X in solid state cell, and promising preliminary data in liquid separated cell
 - Control of nanoparticle formation possible

Future Work

 Understand mechanisms behind increased performance in peptide-bound nanocatalysts

Acknowledgements

Proton OnSite:

- Wayne Gellett
- Kathy Ayers
- Luke Wiles
- Arie Havasov (co-op)
- Wolfgang Gassmann (co-op)

University of Arkansas:

- Lauren Greenlee
- Shelby Foster
- Prashant Acharya
- David Suttmiller

Acknowledgements

CWRU:

- Julie Renner
- Ashley Graybill (undergrad)
- Cheyan Xu (undergrad)

Funding Sources:

Contract No: