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Vision for Electrochemical

Ammonia Production 

Ammonia Synthesis

Renewable 

Power NH3

N2, water

Industrial Uses:

chemical synthesis, 

emissions scrubbing, 

refrigeration 

Fertilizer

• Electrically driven process for low temp/pressure/emissions

• Compatible with intermittent operation

• High regional demand for fertilizer co-located with renewables

J.N. Renner, L.F. Greenlee, A.M. Herring, 

K.E. Ayers, The Electrochemical Society 

Interface, Summer 2015.
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AEM-based Approach

• AEM enables wider range of efficient catalysts vs. PEM

• Lower cost materials of construction in alkaline environment 
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More Catalyst Options:

• Non-noble

• Blended metals

• Core-shell 

• Ligands
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Ammonia Generation Testbed

Key Issues Solved:

• Sources of non-electrochemically generated NH3 can and 
have clouded results

• Added robust controls (argon gas), careful sample prep

Increasing ammonia 

concentration

• Design reviewed by 
senior engineers

• Acid trap to collect 
ammonia

Sustainable Ammonia Synthesis. Roundtable discussion sponsored by DOE BES held on 2-18-16. 

http://science.energy.gov/~/media/bes/csgb/pdf/docs/2016/NH3_Report.
4



Strategies for Increasing Efficiency 
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Reduce protons in 

bulk solution

Limit proton 

transfer rate

Thin insulators Photoadsorbers

• Qualitative model suggests limiting active sites being taken up 
by recombination of H+ and e−

A. R. Singh, et al., Acs Catalysis, 7, (2017).
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Biological Strategies 

Enzyme Part Function

FeMo-
cofactor

Catalyzes reduction of 
nitrogen to ammonia

Fe4S4, 

F-cluster

Facilitates hydrolysis of 
ATP and electron 

transfer

Fe8S7,

P-clusters 

Transfer the electrons 
from the Fe-protein to 

the FeMo-cofactor

Water chain Limits water interacting 
with FeMo-co

8H+ + 8e- + N2 + 16 ATP 2NH3 + H2 + 16 ADP + 16 Pi

L. C. Seefeldt, et al. Curr Opin Chem Biol, 16 (2012). 

• Operates at mild conditions 

• 75% of electrons are utilized for NH3 production

• Controls electron and proton transfer

• TOF ~ 2 NH3/s, 10 mA/cm2 requires ~3 mg/cm2 (reasonable)
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Hybrid Approach 

• Peptides designed for:

• Nanoparticle formation – more active catalyst

• Reaction control – nitrogenase mimics for efficiency
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Peptide Control of Nanoparticle Formation

Weight %

Fe O

Peptide A 86% 14%

Peptide B 86% 14%

Peptide C 83% 17%

Peptide D 44% 56%

Composition Morphology and Phase

• Peptide ligands can be used 
to control Fe nanoparticle 
composition and morphology
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Peptide Binding and Gas Adsorption

Sample

Peptide Loading 

(% mass)

Peptide 1 8.90 ± 0.03

Peptide 1

(Double Loaded) 16.51 ± 0.01

Peptide 2 8.94 ± 0.03

Peptide 3 8.87 ± 0.07

Peptide 4 9.91 ± 0.06

• Repeatable and controllable peptide binding to commercial 
nanoparticles

• Nitrogen gas adsorption isotherms statistically similar

• Importantly not blocking nitrogen 

• BET surface area ~16 m2/g

With Peptide

Without Peptide

Peptide Binding Nitrogen Adsorption
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Secondary Structure Analysis 

Peptide in Solution Bound Peptide

• Peptide structure is heat stable 

• Peptide structure maintains binding to the iron (III) oxide 
nanoparticles
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Peptide Effect on Ammonia Production 

• >10X increase in ammonia production rate

• >10X increase in current efficiency

• Repeatable results, with argon control

3.3 X 10-14

mol cm-2 s-1

Similar to 

previous 

results

>10X 

increase

Current Efficiency:     0.04%                                  0.001%

Conditions: 3 hour of operation at -2.5 V, IrOx counter electrode, 50°C
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Aqueous Separated Cell

Separator
Bubbling 

N2 or Ar

Bubbling 

N2 or Ar

10 mMKOH

Gas leaves to 

acid/water trap

Ag/AgCl

(RE)

Pt wire 

(CE)

Functionalized C 

paper (WE)

Gas exit

• Repeating studies done at Proton OnSite

• Ammonia assay used to analyze ammonia in acid trap 
and electrolyte
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Preliminary Results

• Current efficiency ~1% for peptide subtracting Ar

• Still see an enhancement with the peptide 

• Working on contamination issues and labeled controls

Conditions: 6 hour of operation at -2.0 V (vs. Ag/AgCl), Pt counter electrode, 25°C
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Conclusions and Future Work 

• AEM-based electrochemical systems are a promising 

• Ammonia production is shown above Ar controls with 
non-noble metals in multiple systems

• Careful experimental set up and protocol is important

• Biologically inspired catalyst approaches are promising

• Increased production rates and efficiency 10X in solid 
state cell, and promising preliminary data in liquid 
separated cell

• Control of nanoparticle formation possible

Conclusions

Future Work

• Understand mechanisms behind increased performance 
in peptide-bound nanocatalysts
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