

Proton Ventures

Decentralised Ammonia Production

In the Netherlands;

the solution for storing sustainable energy

Proton Ventures BV Our Vision

- Our vision is to develop and implement
 - sustainable,
 - decentralized and
 - small-scale ammonia production plants and/or energy storage systems, stored as anhydrous ammonia

for various applications such as

- fuel storage applications,
- chemicals and/or,
- fertilizers

Just a case study

Figure 28: Annual total of physical cross-border flows in CWE region and at the German borders in TWh. Source: TenneT, ENTSO-E, Swissgrid

Nuon-4-ammonia

https://www.youtube.com/watch?v=VRUzakQkvwM

• Superbatterij-Eemshaven.mp4

The Dutch Grid

NH3_Storage 2

"The case study" sponsored by RVO and partners

- Extended Literature Search
- Out of box thinking
- Market studies on Power and chemicals under study
- Recent problems and CO2 emission targets
- Stake holder discussions
- Actual project ideas

Capacity development in the Netherlands (GW) 2014-2030. Source: (Triple 2015)

Growth of wind power in the European Union

Yearly Capacity Installations (GW) ——Cumulation Capacity (GW)

EU member state market shares for total installed capacity (GW). Total 141.6 GW. Source: (EWEA 2016)

European cross-border flows. (Source: (TENNET 2016))

Figure 28: Annual total of physical cross-border flows in CWE region and at the German borders in TWh. Source: TenneT, ENTSO-E, Swissgrid

Discrepancy (Actual – Forecast wind power) per hour in Germany

Time - Hourly for one year

Hourly discrepancy (Actual – Forecast wind power) in Germany

Hours for one year

Table 4.1: Energy storage technologies

Storage type		Power rating	Suitable storage duration	Response time	Technical lifetime	Technological maturity
Mechanical	Pumped Hydro	100 MW to GW's	hours to years	sec-min	25+ years	Commercial
	Compressed Air	10-100 MW's	hours	sec-min	25+ years	Commercial
	Flywheel	1 MW	hours	sec-min	20 years	Commercial
Electrical	Capacitors	<100 kW	<1 hour	sec	25+ years	Partially commercial
	Superconductor magnet	10 kW- 1 MW	<1 hour	sec	25+ years	Partially commercial
Electro- chem	Battery (various types)	<50 MW	min-hours	sec	5-10 years	Commercial
Chemical	Hydrogen	kW- GW	hours to years	sec-min	20 years	Development
	Ammonia	kW- GW	hours to years	sec-min	20 years	Development
Thermal	Sensible/latent heat	10-100 kW's	hours	sec-min	5-10 years	Partially commercial

Overview of energy storage technologies

Production, transport and storage costs for ammonia and hydrogen

	Hydrogen (€/kg H₂)	Ammonia (€/kg H₂)	
Production	2.70	3.40	
Pipeline transport	1.69	0.17	
Storage			
1 day	0.71	0.03	
15 day	1.78	0.05	
182 day	13.48	0.49	

Roadmap CO₂ Reduction NL – Nuon View

First step until 2030: Current technologies

Power CO₂ emissions reduction towards ~21 Mton in 2030, Total demand: ~120 TWh Average CO₂ emission: ~175 kg/MWh

- Primarily wind/solar new built, 50% of demand
- Phasing out coal or decrease emissions to level of gas
- Gas: ~18 Mton emissions for ~45 TWh of power
- · Other emissions waste/industry related
- Demonstration of (storage) technologies needed >2030

Second step after 2030: Tech to be developed

Power CO_2 emissions reduction towards ~7 Mton in 2050 Total demand 150..200 TWh due to electrification. Average CO_2 emissions: <50 kg/MWh

- Remaining gas CCGT (20 TWh / 7 Mton emissions)
- · Wind / solar up to 60% of demand
- new built power production and storage that needs to be
 (a) flexible and (b) zero emission (~50 TWh)
- Large scale electrification of transport, industry, heating

Actual Plan in phases

- Production of ammonia in decentralised places
 - North Netherlands, in combi with H2 byproduct/ Electrolysers/Solar/wind
- NH3 storage 1
- Development of 400 ktpa ammonia convertor based on sustainable energy
 - Pricing realistic compared to peak power (@sustainable cheap NH3)
 - Economic at price levels of Peak power (max 5 times bottom price power)
 - Proven technology (Haber Bosch initial, later Battolyser/SSAS etc)
 - To avoiding grid problems (exactly at main grid)
 - Logistical problems solved (at shore)
 - Power production solved (guarantees by Power plant builders)
 - Accepted by stakeholders

Actual Ideas

- NH3 storage 2
- Tidal Energy based at no grid/low voltage grid
 - New infrastructure cheaper than cables (CAPEX discussion)
 - Logistics solved (short distances /conversion to urea)
 - Acceptable by Dutch laws (especially storage at tourist attraction)
 - Acceptable by Permitting conditions
 - Pricing of such ammonia/Power

Proton Ventures BV

Ongoing projects

Power2Ammonia
 Value Chains and business cases in industrial and rural circumstances

Gas2ammonia

Biogas, flared gas, waste gases

Proton's power - to - ammonia plant

Conclusions

- Small scale production of NH3 to solve CO2-emissions is "best solution"
- Can be economical at levels of app 300 Euro/t NH3
- Is proven technology for
 - Gas2ammonia/biogas2ammonia/Power2/ammonia
- NH3 conversion to Power expected to be "proven" for mix of 25% NH3 in Nat gas, to incresse to 40% target
- If 40% it seems solving the problems till 2030.
- Further improvements on technology always interesting/but mainly on H2 costs.

Thus:

 Decentralised Power2ammonia is the only solution in NL and maybe many other countries/areas.

Proton Ventures

Karel Doormanweg 5 Schiedam 3115 JD The Netherlands

Fax: +31-10-2730879

E-Mail: info@protonventures.com

Thank you Questions?

