

Student Laboratory Module: The Kinetics of NH₃ Cracking

Jason C. Ganley 23 September 2014

Presentation Outline

- Laboratory work in traditional lecture courses
- Ammonia decomposition as a model reaction
- Kinetics lab hardware
- Data collection
 - Detector details
 - Experimental concerns/considerations
- Data analysis
 - Development of kinetic rate law
 - Rate limiting step?
 - Reactor design methodology

Laboratory Modules in CBE

- Hands-on work with foundational undergraduate courses is a rarity for most curricula
 - Cost of lab development and instruction
 - Limitation on material covered in lectures
- CBE Department at CSM makes them a priority
 - Kinetics laboratory
 - Transport laboratory
 - Process and bioprocess design labs
 - Thermodynamics and process principles laboratories
- Senior labs (kinetics, transport) administered at end of Fall semester

11th Annual NH₃ Conference

Kinetics Laboratories

- Previous kinetics labs
 - Mutarotation of D-glucose (dextrose)
 - Reversible reaction, no chemical hazards
 - Complicated, boring, messy
 - Hard on equipment
 - Food coloring / bleach
 - Irreversible, fairly safe chemicals
 - Uses lots of water
 - Difficult to create robust absorbance detector
- Present effort:

heterogeneous catalytic gas reactions

Heterogeneous Catalysis

- Dominant reaction type in process industries that hire our graduates
 - Hydrodesulfurization (hydrotreating)
 - Catalytic cracking of hydrocarbons
 - Steam reforming
- Advantages of this lab experiment type
 - No waste clean-up
 - Long-lasting, easy to procure reactant gases
 - High detector reliability
- Concerns
 - Special safety considerations (chemical, thermal, fire)

Limited selection of reactions

Ammonia Decomposition

$$2 \text{ NH}_3 \rightarrow 3 \text{ H}_2 + \text{ N}_2 \qquad \Delta \text{H}^\circ = 46 \text{ kJ / mol}$$

- Reversible reaction, but nearly irreversible at low reactor pressures (a desired condition)
- Small heat of reaction, but is also endothermic
- Nearly ideal chemistry for student investigation
 - No side reactions or products
 - Large thermal conductivity change with reaction
 - Large stoichiometric coefficient for hydrogen

Long-lasting store of reactant (NH₃)!

Experimental Setup

- Fixed- or packed-bed reactor in tube furnace
- Calibrated mass flow controllers for gases
- Thermal conductivity detector (0-100% H₂ in N₂)
- Reactor bypass available
- Rolling cart holds all instruments
 - Portability
 - Remove to storage in Spring

Experimental Setup, cont'd.

Experimental Setup, cont'd.

Experimental Setup, cont'd.

Catalyst Details

- 2 wt% Ruthenium on 1/4" gamma alumina rings
- Total surface area ~ 100 m² per gram
- Metal dispersion ~ 40%
- Common NH₃ use:
 - Ammonia cracking
 - Low P synthesis
- Chosen system causes little to no catalyst poisoning or deactivation

Gathering Data

- "Differential" reaction rate data required
 - Products generated may influence reaction rate
 - Extent of reaction must be small, but measurable
- Guide: previous work on ammonia decomposition

J.C. Ganley, J. of Catalysis vol. 227 (2004)

Composition vs. Conversion

Gathering Data

- Initial gas mixtures chosen to isolate individual reactant and product effects on reaction rate
- Argon used as a diluent only

cm)	Ar (sccm)
Data: 3	350°C, 95 g catalyst

H ₂ (sccm)	N ₂ (sccm)	NH ₃ (sccm)	Ar (sccm)
0	0	1000	0
0	0	1000	500
0	0	1000	1000
0	0	1000	1500
250	0	1000	750
500	0	1000	500
1000	0	1000	0
0	500	1000	500
0	750	1000	250
0	1000	1000	0

Reactor Effluent Analysis

- Must proceed carefully with the thermal conductivity detector!
 - Factory calibrated, 0-100% H₂ in N₂
 - Thermal conductivity of gas mixtures are typically nonlinear with composition.
- H₂: High thermal conductivity [186 mW / (m K)]
- N₂, NH₃, Ar much lower & close to each other, but not exactly the same...

 $-N_2$: 25.8 mW / (m K)

 $-NH_3: 25.1 \text{ mW / (m K)}$ (-2.7%)

-Ar: 18.0 mW / (m K) (-30%)

Varying Thermal Conductivity

11th Annual NH₃ Conference

Dilution of N₂ with Argon

H ₂ (sccm)	N ₂ (sccm)	Ar (sccm)	Bypass Signal
20	180	0	10.0%
20	160	20	8.7%
20	140	40	7.5%
20	120	60	6.4%
20	100	80	5.3%
20	80	100	4.3%
20	60	120	3.3%
20	40	140	2.4%
20	20	160	1.5%
20	0	180	0.6%

Mixtures w/Small H₂ Variance

- Good news: differential reactor conditions reduce nonlinearity with conversion of ammonia
- Condition-specific calibration & detector reading interpretation is still necessary

(Unverified!) Results with Rate Data

H ₂ (sccm)	N ₂ (sccm)	NH ₃ (sccm)	Ar (sccm)	Rate (mol NH ₃ /kg cat/h)
0	0	1000	0	3.24
0	0	1000	500	3.08
0	0	1000	1000	2.71
0	0	1000	1500	1.87
250	0	1000	750	1.05
500	0	1000	500	0.37
1000	0	1000	0	< 0.01
0	500	1000	500	2.69
0	750	1000	250	2.62
0	1000	1000	0	2.60

Rate Law: Surface Reaction Rate Limit

$$-r_A = \frac{kP_A P_B \dots}{1 + K_A P_A + K_B P_B + \dots}$$

- Use this form to generate a qualitative rate law that follows kinetic data
- Rate of disappearance of reactant "A" will be increased by terms in numerator, decreased by denominator terms, and mixed effect when terms appear in both
- Look at partial pressures, or concentrations, of involved species alongside rate effects.

Dependence on N₂

H ₂ (sccm)	N ₂ (sccm)	NH ₃ (sccm)	Ar (sccm)	Rate (mol NH ₃ /kg cat/h)
0	0	1000	1000	2.71
0	500	1000	500	2.69
0	750	1000	250	2.62
0	1000	1000	0	2.60

- What's going on here? Not much.
- Fairly constant rate of ammonia disappearance regardless of nitrogen presence.
- Note: Equivalent partial pressure of ammonia in each experimental run.

Dependence on NH₃

H ₂ (sccm)	N ₂ (sccm)	NH ₃ (sccm)	Ar (sccm)	Rate (mol NH ₃ /kg cat/h)
0	0	1000	0	3.24
0	0	1000	500	3.08
0	0	1000	1000	2.71
0	0	1000	1500	1.87

- What's going on here? It's complicated.
- Rate of ammonia disappearance increases with initial ammonia concentration, then levels off.
- Note: Partial pressure of ammonia varies from 0.4 up to 1 by variation of argon content of mix.

Dependence on H₂

H ₂ (sccm)	N ₂ (sccm)	NH ₃ (sccm)	Ar (sccm)	Rate (mol NH ₃ /kg cat/h)
0	0	1000	1000	2.71
250	0	1000	750	1.05
500	0	1000	500	0.37
1000	0	1000	0	< 0.01

- What's going on here? H₂ has a big effect.
- Rate of ammonia disappearance drops quickly as initial hydrogen content rises.
- Note: Equivalent partial pressure of ammonia in each experimental run.

Rate Law & Parameter Estimation

- Ammonia increases rate at low concentrations, less effect at higher concentrations
- Hydrogen strongly inhibits reaction rate
- Nitrogen has little (if any) effect
- Rate law that qualitatively agrees:

$$-r_A = \frac{kP_A}{1 + K_A P_A + K_H P_H}$$

 Rate law parameters (k, K_A, K_H) determined by linearization of rate law, performing nonlinear regression of rate data

Reactor Design

- Simple process, but tedious
- Using packed-bed reactor design equation in differential form...
 - Express all concentrations of gases as partial pressures
 - Recast the partial pressures as functions of ammonia conversion
 - Integrate the design equation
- Allows reactor design for desired conversion or reactor pressures (including integral reactors... those with larger conversions than the rate data here was allowed)

Questions?

Jason C. Ganley
Colorado School of Mines
Dept. of Chemical & Biological Engineering
1613 Illinois Street, AH 155
Golden, CO 80401
(303) 384-2163
jganley@mines.edu