

A marine fuel standard for Ammonia - an engine designers perspective

17 November 2020

Dorthe Jacobsen Engine Process Development, R&D, Two-stroke 17 November 2020

Agenda

- **1** Our business in a global context
- **2** Future fuels
 - MAN B&W Two-stroke Multi fuel engines
- **3** Drivers for change
- **4** Ammonia:
 - Why Ammonia?
 - Challenges?
 - Fuel spec.

5 Summary

1 Our business in a global context

Our Business in a Global Context

United Nations Climate Change

Paris Agreement

UN Sustainable Development Goals

IMO Initial GHG Strategy (13 April 2018):

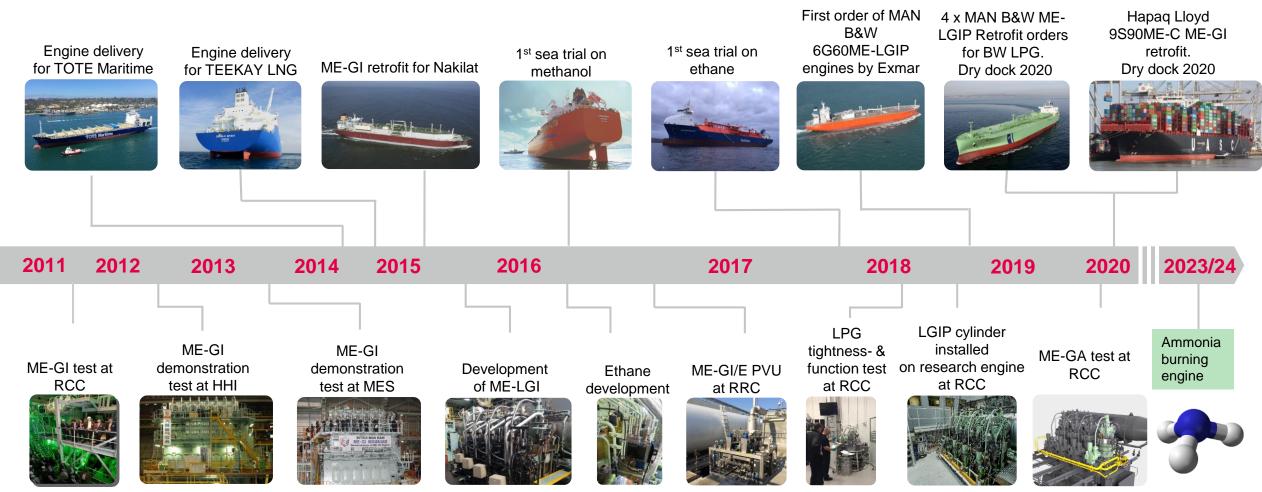
Goals for International Shipping:

- Reduction of CO₂ per transport work: min. 40% by 2030 towards min. 70% in 2050*
- GHG emissions to **peak as soon as possible**
- Reduction the total annual GHG emissions by min. 50% by 2050*

*) Compared to 2008

CLIMATE Action

13


Our marine engines for large ships ≈ 1.5 % of world's CO₂

We take responsiblity to reduce climate impact!

2 MAN B&W two-stroke – multi fuel engines

MAN B&W Two-Stroke – Multi fuel Engines

Historical timeline

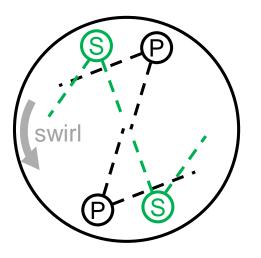
New Fuels

Modular design enables extensive retrofit options and MAN Energy Solutions future proof your investment

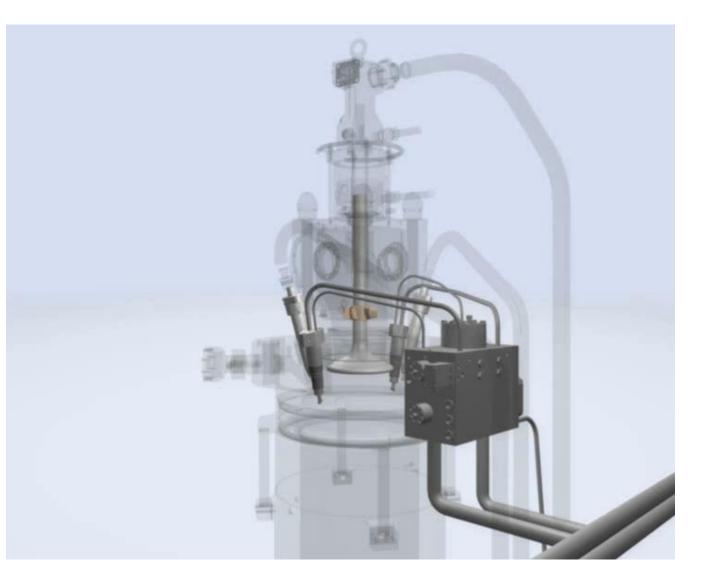
Fuel types	MC	ME-B	ME-C	ME-GI	ME-GA*	ME-GIE	ME-LGIM	ME-LGIP
0-0.50% S VLSFO	Design	Design	Design	Design	Design	Design	Design	Design
High-S HSHFO	Design	Design	Design	Design	Design	Design	Design	Design
LNG	-	-	Retrofit**	Design	Design	Design	Retrofit**	Retrofit**
LEG (Ethan)	-	-	Retrofit**	Retrofit**	-	Design	Retrofit**	Retrofit**
Methanol / Ethanol	-	-	Retrofit**	Retrofit**	-	Retrofit**	Design	Retrofit**
LPG	-	-	Retrofit**	Retrofit**	-	Retrofit**	Retrofit**	Design
Biofuels	Design	Design	Design	Design	Design	Design	Design	Design
Ammonia***	-	-	(Retrofit**)	(Retrofit**)	-	(Retrofit**)	(Retrofit**)	(Retrofit**)

*Otto-cycle gas engine.

**Only one second fuel per retrofit.

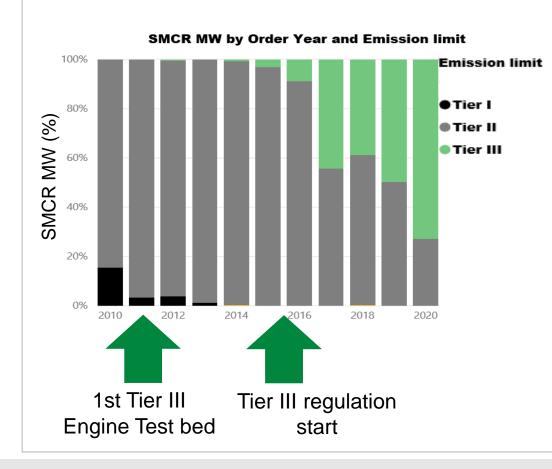

*** Ammonia burning engine development started.

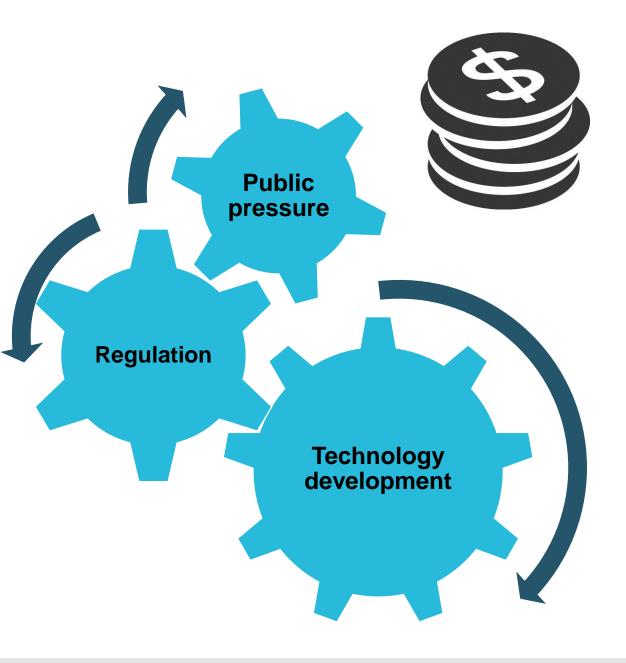
For description of MAN ES 2-stroke engine types: https://marine.man-es.com/two-stroke/2-stroke-engines/overview


Dual fuel engines

Engines capable of operating on conventional HFO / Diesel and an additional fuel through a separate fuel injection system.

Diesel injector for pilot injectionSecond fuel injector




3 Drivers for change

Drivers for change

Public pressure + Regulation + Technology development

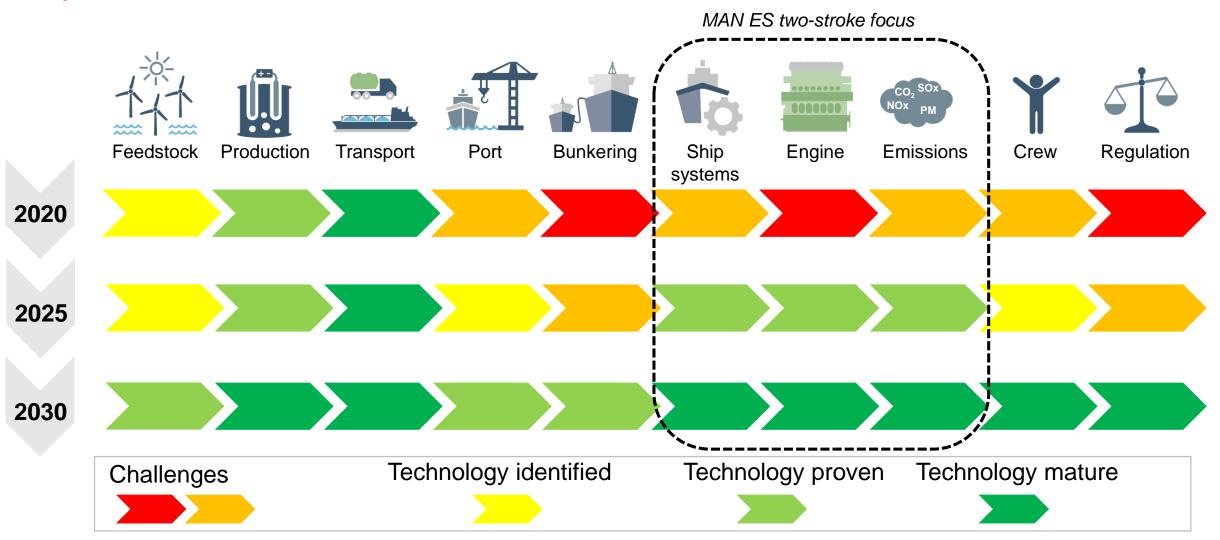
Market introduction: NOx reduction technology

4 Ammonia:

- Why Ammonia?
- Challenges?
- Fuel spec.

Marine fuels: <u>2020</u> -> 2030 -> 2050

۱`

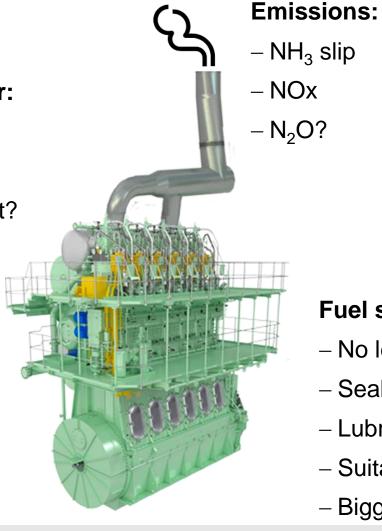

Current status for different fuel types

1

Fuel Type	Fuel production	Price Availab	Availability	bility Competences in the marine industry	Regulation	Safety		Environment		
						Toxicity	Flamability	GHG		NOx, PM,
								Fuel production	On the ship	SOx, BC
0.10%S ULSFO	Fossil									
	Bio									
	PtX									
0.50 %S VLSFO	Fossil									
	Bio									
	PtX									
High-S Heavy fuel	Fossil									
LNG	Fossil									
	Bio									
	PtX									
Methanol	Fossil									
	Bio									
	PtX									
LEG (Ethane)	Fossil									
LPG	Fossil									
Ammonia (NH ₃)	Fossil									
	Bio									
	PtX									
Hydrogen	Fossil									
	Bio									
	PtX									

Possible implementation pathway for a new marine fuel

Example: PtX Ammonia


Challenges for operation on NH₃

Engine designer perspective

Combustion chamber:

– Combustion:

- Dual fuel
- Pilot fuel amount?
- Cylinder condition
- Lube oil

Fuel system:

- No leak
- Seal
- Lubricate
- Suitable materials
- Bigger

NH₃ characterisics

- Safety: Toxic
- Smelly
- Volatile
- Degreaser
- Very low viscosity
- Low energy density
- Difficult to ignite
- Aggresive to materials:
 - Elastomers
 - Metals:
 - -SCC
 - General corrosion

Guiding fuel spec. for NH₃ – at engine inlet MAN Energy Solutions: ME-LGIA engine type

Designation	Unit	Limit 🥊	Value	Test Method Reference ¹	
Ammonia	% (w/w)	min.	99.5	TBD	 Energy content
Water	$0(-(y_1,y_2,y_3))$	min.	0.1	ISO 7105	– Inhibit SCC
	% (w/w)	max.	0.5	1507105	
Oil	% (w/w)	Max.	0.4	ISO 7106	– Control amount
Oxygen	% (w/w)	max.	TBD	TBD	– Inhibit SCC
Nitrogen	% (w/w)	max.	0.3	TBD	 Control air amount
Sulfur	% (w/w)	max.	TBD ²	TBD	- Regulation
Particles	-	max	Note ³	-	– Reduce wear

- 1. Latest edition to be applied. ISO standards methods are the highest level of international methods and are therefore recommended. Equivalent methods from ASTM, GPA and IP can also be used.
- 2. Compliant with statutory requirements
- Most particles are expected to end up in the NH3 due to transport of the NH3, not during NH3 production. Particle sizes and amounts are therefore dependent on the actual NH3 logistics involved between NH3 production and vessel fuel tank. Filtering to 10 µm between vessel fuel tanks and engine is therefore considered the best way to avoid engine problems due to particles. Particles breaking free from the NH3 production catalyst may be an issue with respect to wear of the engine and this topic is subject to further evaluation.

NH₃ transported as liquid

- Atmospheric pres., -33 C
- High pressure, atmospheric temp.

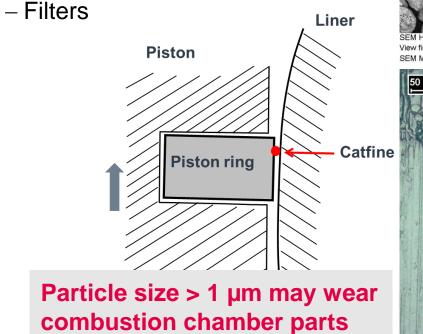
SCC – Stress Corrosion Cracking

 NH_3 fuel spec.

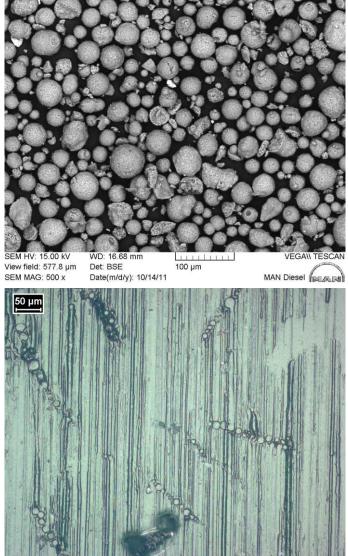
General recommendation to avoid NH₃ **induced SCC:**

- Water: > 0.1 %
- Reduce O_2 level
- Reduce stress
- Use resistant materials

Illustration: Cl⁻ induced SCC in 316


Particles

NH₃ fuel spec.


General recommendation to avoid wear from particles:

- Reduce amount of particles
- In traditional fuels:
 - Max. amount as bunkered
 - Fuel cleaning system:
 - Settling tanks
 - Separators
 - Day tank
 - Filters
 - Max. amount at engine inlet

- In LNG, LEG, MeOH, LPG:
 - Fuel cleaning system:

Cat fines from petroleum refining

Marine Fue	el regu	lation and s	tandar	ds	A	INTERNATIONAL STANDARD Petroleum products — F	ISC 8217 Sinth edition 2017-4
Fuel Type	MAN ES 2-Stroke	IMO Regulation	IMO	ISO Standard*	ISO	— Specifications of mar Produits péroliers — Combattibles (clusse combuttibles pour la marine	
Diesel/Heavy fuel	Х	OK		OK			
Low-flash point traditional fuel	Х	Almost done (IGF code, 01.01.2024)		Not started			
LNG	Х	OK		OK		ISO	Reference numb ISO 8217:2017 © ISO 20
LEG (Ethane)	Х	Ethane carriers OK (IGC code)		Not started		INTERNATIONAL STANDARD	ISC 23306
Methanol	Х	Interim guidelines		WG approved			First editio 2020-1
LPG	Х	In progress		Not started		Specification of liquefied natural ga	d natural gas
Biofuels	Х	NOx compliance?		ISO 8217:2017 6th ed. allows 7% FAME*** in DM. New sub group started		as a fuel for marine appl	lications
Ammonia (NH ₃)	(X)**	Not started		Not started			
*) Compliance with IS(**) Under development		re not mandatory		***) FAME: EN 14214			Reference numb

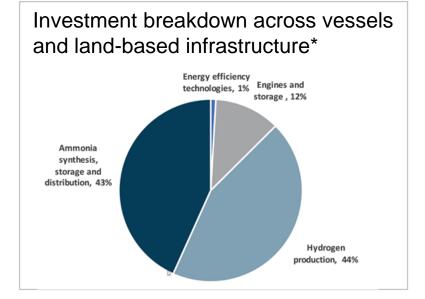
MAN Energy Solutions

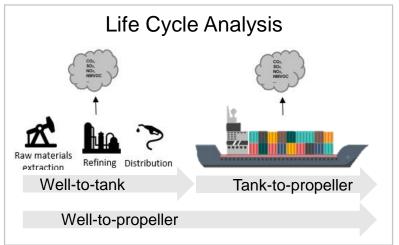
ISO

Reference number ISO 23306:2020(E)

© ISO 2020

5 Summary


The way to zero carbon shipping


At least 50% GHG reduction in 2050 requires:

- Drivers (regulatory and/or economical)
- Major investments in energy/fuel production (upstream)
- Funding: Research, development and demonstration
- Cross-sectoral cooporation projects
- LCA approach to ensure net-GHG reduction
- Implementation of new fuels to start by 2030
 preferably sooner

Work should start now - and we all have our roles

*) Getting to Zero Coalition: https://www.globalmaritimeforum.org/news/the-scale-of-investment-needed-to-decarbonize-international-shipping/

MAN Energy Solutions Future in the making

Thank you very much

Disclaimer:

All data provided in this document is non-binding.

This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.

Dorthe Jacobsen Engine Process Development