ACTIVATION OF MOLECULAR NITROGEN WITH TRANSITION METAL COMPLEXES

Barun Jana, Oleg Pestovsky, Aaron Sadow, and <u>Andreja Bakac</u>

NH₃ Fuel Conference

Portland, OR September 18-21, 2011 **HABER-BOSCH PROCESS**

150 million tons of ammonia/year from nitrogen and hydrogen

•Catalytic steam reforming $CH_4 + H_2O \rightarrow CO + 3H_2$

•Water gas shift reaction $CO + H_2O \rightarrow CO_2 + H_2$

•Catalytic NH_3 formation $N_2 + 3H_2 \rightarrow 2 NH_3$ $300-550^{\circ}C$, up to 250 atm Fe or Ru oxide cat **KINETICS VS THERMODYNAMICS**

$N_2 + 3H_2 \implies 2 NH_3$

Yields of ammonia are lower at high temperatures

•125 bar of H_2/N_2 (3:1 molar ratio)

125°C, yield is 91%.

500 ℃, yield is 12%

Must increase pressure to counteract temperature effect

NEED CATALYST

TO LOWER KINETIC BARRIER

ACTIVATION OF N₂ BY BINDING TO COMPLEXES

Free N ₂ :	PhN <u> </u>	$\rm NH_2 \rm NH_2$
N-N 1.0975 Å	1.255	1.460
∨ _{NN} 2331 cm ⁻¹	1442	1111

M. D. Fryzuk, Chem. Rev. 2004, 104, 385; Acc. Chem. Res. 2009, 42, 127

ACTIVATION AND CLEAVAGE OF N₂

Yandulov, Schrock Science 2003, 301, 76

Chirik et al, Nature 2004, 427, 527

Holland et al, JACS 2009, 10804

MORE EXAMPLES

N₂-COMPLEXES ARE KNOWN FOR MANY METALS, BUT BOUND NITROGEN IS NOT VERY REACTIVE

Chirik et al, J. Am. Chem. Soc. 2010, Organometallics 2011

BIOLOGICAL NITROGEN FIXATION

Plants (at ambient temperature & pressure):

N_2 from air

Enzyme (= catalyst) + protons + electrons

 $NH_3 + H_2$

NITROGENASE ENZYMES (Fe, Mo, V)

Three kinds characterized to date:

- Molybdenum + Iron
- Vanadium + Iron
- Iron only

IRON SEEMS ESSENTIAL FOR BIOLOGICAL N₂ REDUCTION

PREPARE NOVEL IRON COMPLEXES

AS CANDIDATES FOR NITROGEN

ACTIVATION

KNOWN REDUCTION OF N₂ TO NH₃ AT IRON

1,2-bis(bis(methoxypropyl)phosphino)ethane)

Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. J. Am. Chem. Soc. 2005, 127, 10184.

 $Fe(P_2)_2Cl_2 + H_2 / N_2$

Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. *J. Am. Chem. Soc.* **2005**, *127*, 10184. Leigh, G. J.; Jimenez-Tenorio, M. *J. Am. Chem. Soc.* **1991**, *113*, 5862.

- •Starting complex (P₂)₂Fe^{II}Cl₂ not stable in water (hydrolyzes in 24 hours, H⁺-catalyzed)
- •Protonation of (P₂)₂Fe⁰N₂ causes hydrolytic destruction of complex (free protonated ligand observed)
- Every step carried out independently (protonation/deprotonation)
- Need a "single pot" catalytic process

OUR STRATEGY

Use ligands that:

Bind more strongly (polydentate, binuclear), but do not significantly perturb electronic structure
Bind in a folded configuration to provide "reaction pocket" and strain in ligand back-bone
Encourage temporary dissociation of one coordinating atom to allow binding of reactants (nitrogen, hydrogen)
Keep remaining three atoms firmly bound to preserve integrity of complex R₂P₁

4 Phosphorus atoms – tetradentate Similar electronic structure as P2 Short bridge – *cis*-structure ?

SYNTHESIS OF IRON COMPLEXES

Cis-geometry is common for this ligand!

WEAK COORDINATION POSITION

IR: 1941 cm⁻¹ (CO)

CO displaces one of four P-atoms

INDIVIDUAL STEPS – PRELIMINARY EXPERIMENTS

INDIVIDUAL STEPS – PRELIMINARY EXPERIMENTS

NOVEL ROUTES TO INTERMEDIATES

NOVEL ROUTES TO INTERMEDIATES

Characterization

Have crystal No structure yet

NOVEL ROUTES TO INTERMEDIATES

υ(N₂) 2116 cm-1 ESI-MS 713 (P₄FeH⁺)

υ(N₂) 2094 cm⁻¹

CRYSTAL

Fe(0) or Fe(II)?

 $v(N_2)$ 2094 cm⁻¹ supports Fe(II)

IN THE MEANTIME...

Bis-(4,4' oxazoline)-based cyclopentadienyl ligand

Electron rich, negatively charged Dissociable nitrogen provides free coordination site

Oxygen can act as internal base

FUTURE

υ(N₂) 1973 cm⁻¹

Ph

Ph.

+

Cl

(or Na⁺)

·PPh₂

 N_2

- H₂, H+
- Establish proper conditions
- Look for reduced product
- NH₃, N₂H₄....

- Further reduction to weaken N-N bond
- Reactions with H⁺, H₂

υ(N₂) 2094 cm⁻¹

Ph₂ Cl

- Reduction + N₂
- Make N₂ complex
- Expect significant reactivity

CONCLUSIONS

Fe(II) DPPEPM complexes

- have cis geometry expect it to be beneficial for reactivity
- React with H₂ and N₂ under appropriate conditions
- -(P4)FeBr₂ reacts with H_2 in lutidine buffers to give (P4)Fe(H)(H_2)⁺
- Reversible binding of N₂ observed
- N₂-binding confirmed by X-ray crystal structure
- Reaction of $Fe^{0}(N_{2}) + H^{+}$ does not cause loss of ligand

Fe(II) bis-oxazoline-cyclopentadienyl

- Nitrogen is partly reduced
- IR stretch: 1973 cm⁻¹

Expect this ligand to also yield reactive complexes of other metals (Ti, Zr....)

Aaron Sadow

Funding: Iowa Energy Center

RUTHENIUM ANALOG

