Performance of a Compression-Ignition Engine Using Direct-Injection of Liquid Ammonia/DME Mixture

Song-Charng Kong
Matthias Veltman, Christopher Gross
Department of Mechanical Engineering
Iowa State University

Acknowledgements:

Iowa Energy Center; Norm Olson, Kevin Nordmeyer

Background

Motivation

- Ammonia (NH₃) combustion does not generate CO₂
- Hydrogen carrier, renewable, etc.

Challenges

- Ammonia is very difficult to ignite
 - Octane number ~ 130
 - Autoignition T ~ 651 °C (gasoline: 440 °C; diesel: 225 °C)
- Ammonia flame temperature is lower than diesel flame T
- Ammonia emissions can be harmful
- Potential high NOx emissions due to fuel-bound nitrogen
- Gas phase at atmospheric pressure; Erosive to some materials
- Low energy content (~40% of that of diesel fuel per unit mass)

Thermodynamics/Chemistry

Stoichiometric chemical reaction

$$NH_3 + 0.75 \cdot (O_2 + 3.76 \cdot N_2) \rightarrow 1.5 \cdot H_2O + 3.32 \cdot N_2$$

Fuel	Molecule	Boiling Point (°C)	(Air/Fuel) _s	Latent Heat (kJ/kg)	Energy Content (MJ/kg-fuel)	Energy Content (MJ/kg- stoichiometric mixture)
Methanol	CH₃OH	64.7	6.435	1203	20	2.6900
Ethanol	C ₂ H ₅ OH	78.4	8.953	850	26.9	2.7027
Gasoline	C ₇ H ₁₇		15.291	310	44	2.5781
Diesel	C _{14.4} H _{24.9}		14.3217	230	42.38	2.7660
Ammonia	NH ₃	-33.5	6.0456	1371	18.6103	2.6414

Approach #1

- Introduce ammonia to the intake manifold
- Create premixed ammonia/air mixture in the cylinder
- Inject diesel fuel to initiate combustion
 - Without modifying the existing injection system

Engine Setup

- John Deere (4 cylinder, 4.5 liter)
 - Operated at various load and speed conditions
 - Vapor ammonia introduced into the intake duct after turbo, before manifold

Test Results – Constant NH₃ Flow Rate

 Engine torque increases suddenly once ammonia is inducted

Test Results – Constant Torque

- Fixed at specific diesel fueling, adjusted NH3 flow rate to maintain constant torque
 - Can achieve 5% diesel / 95% NH₃ energy ratio

NH₃ Exhaust Concentrations

- Concentrations vary depending on NH₃ fueling rate
- Further study is required to reduce NH₃ emissions.

Approach #2

- Use direct liquid fuel injection
 - Confine combustion mixture near the center
 - To reduce exhaust ammonia emissions
- Ignition source dimethyl ether (CH₃-O-CH₃)
 - Mixture of DME and NH3
 - Fuel mixing and storage at high pressure
 - New fuel injection system without fuel return
 - Injection pump, injector, electronic control

Engine Setup

- Yanmar diesel engine (L70V, 320 c.c.)
 - Rated power at 6.26 hp at 3480 rpm
- Develop new fuel injection and engine control systems
 - Bosch GDI type injector (up to 200 bar injection pressure)

Setup

- Mixing and storage of ammonia/DME at high pressure
- Exhaust emissions measurements
 - Horiba MEXA-7100DEGR (CO₂, CO, O₂, HC)
 - Horiba 1170NX (NO_x, NH₃)
 - AVL Smoke Meter (PM)

Fuel mixing system

Emissions analyzers

Operating Conditions

Test Results

- Baseline operation using 100% DME
 - Explore operating range before using NH3/DME mixture
 - For each operating point, various start-of-injection timings were tested
 - Provide flexibility for future optimization

100% DME

Mode 7 (2548 rpm) emissions

Effects of Ammonia Combustion (Mode 7)

- 100%DME vs. 20%NH3/80%DME
 - Soot remains at low level
 - NOx increases due to fuel-bound nitrogen

Effects of Ammonia Combustion (Mode 7)

- 100%DME vs. 20%NH3/80%DME
 - Lower combustion temperature of ammonia causes more CO and HC emissions
 - Implication to fuel efficiency

Effects of Ammonia Combustion (Mode 21)

 Comparable combustion and fuel efficiency at this lower speed

Effects of Ammonia Combustion

- Exhaust ammonia emissions much lower than Approach#1
- Direct injection strategy benefits exhaust ammonia emissions

Alternate Injection Strategy

- To extend the operating range
- Proposed strategies
 - Double fuel injections
 - Offer flexibilities in fuel delivery
 - Used in industry for emissions and noise reduction
 - New fuel injector
 - Original: single hole
 - Alternate: eight holes help with air utilization

Double Injection, 100% DME

- Current system modified for using double injections
 - Engine operations possible using double injections
 - Comparable fuel efficiency and emissions
 - Results based on Mode 7 (2548 rpm)
 - Pilot SOI= $-45 \sim -35$ ATDC
 - Pilot quantity=30% of total fuel
 - Main SOI= -10 ATDC
- Exploring other conditions
 - Varying the three injection variables
 - Other operating points

Multi-Hole Injector

- Change from single hole to 8 holes
 - Higher exhaust NOx may imply higher combustion temperature to sustain higher load operation
- Exploring combination of using 8-hole injector in combination with double injections

Summary

- Demonstrated ammonia combustion in diesel engines
- Port induction of ammonia coupled with direct-injection diesel fuel
 - Exhaust ammonia level at "thousands of ppm" under the conditions studied
- Direct injection of ammonia/DME
 - Exhaust ammonia level at "hundreds of ppm" under the conditions studied
 - Exploring optimal injection strategies for ammonia combustion
- Perspectives effects of engine size
 - Challenges for small engine: more heat loss, higher engine speed required, lower fuel injection pressure
 - Large engine will favor ammonia combustion