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Why Fuel Cells?

e Pros:
= High chemical-to-electric efficiency (45-80%)
= No moving parts (quiet, low/no maintenance)
= High energy density (limited only by size of fuel tank)
= Cell is usually lightweight
= Systems are inherently scalable

o Cons:
= Expensive! (catalyst costs, housing costs, electrolyte costs)
=« Often limited by fuel type or purity of fuel & fuel byproducts
= Limited power density (difficult to get energy delivered

quickly)

=« Balance of plant may be costly/heavy/problematic

e S0, how do we maximize the “"pros” and limit the

impact of the “cons?”




Focus Areas

e Cons:

=« Expensive! (catalyst costs, housing costs,
electrolyte costs)
- Catalysts and housing: impacted by operating temperature
- Electrolyte: Fuel cell type (op. temperature, again)

=« Often limited by fuel type or purity of fuel & fuel
byproducts
- Compatibility with electrocatalysts: proper fuel choice
- Direct fuel & avoiding catalyst poisoning: op. temperature

=« Limited power density (difficult to get energy
delivered quickly)

=« Balance of plant may be costly/heavy/problematic
- Reducing HX sizes: operating temperature
= Fuel reservoir size or delivery of fuel: proper fuel choice




Step 1: Use the Right Fuel

CH4 103 (1.5 H2)
NH3—>EH,,+1N,, AHG=46£
2 - 2 ° mol

o Very mild enthalpy of reforming

e NH; is a liquid at room temperature and 10 bar
= Power density is comparable to other liquid fuels
= Vaporizes when throttled (no flash line required)

o Essentially non-flammable, non-explosive

o 171 kWh of motive power from 15 gallons ammonia
(38 kg) with 48% efficient fuel cell system incl. motor

e Highway driving: 19 kW; vields 9 hours of cruising
e 65 miles per hour takes you 585 miles
o Ammonia makes that possible

356 kWh nom 4
180 mi gas




Step 2: Operate at the Right Temperature

oLow Temperature Fuel Cell Advantages
= Quick start-up to operating temperature (~100°C)
=Wide range of cell construction materials

eHigh Temperature Fuel Cell Advantages
= Fuel flexibility via internal fuel reforming
= Inexpensive, base metal electrocatalysts
= Easier heat recovery for increased efficiency

eINntermediate Temperature Fuel Cells: The
Best of Both Worlds?

= Precious metal catalysts not needed above ~300°C
= Steel internals may be used below ~500°C




Contemporary Fuel Cell Options

ePolymer Electrolyte Membrane Fuel Cells
(PEMFC) [80°C, H*]

eAlkaline Fuel Cells (AFC) [80-150°C, OH"]

. [220°C, H*]
o[ Intermediate Temp Fuel Cell, 300 - 500°C]
. [600°C, H*]

eMolten Carbonate Fuel Cells (MCFC)
[650°C, CO5%]
eSolid Oxide Fuel Cells (SOFC) [800°C, 02]
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1st Generation

Ammonia Cell Performance
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1st Generation
Ammonia Cell Performance
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Conversion to Planar Geometry

« Improvement of electrolyte conduction
=Thinner layer of electrolyte = less ohmic loss
= Faster water transfer to/from/across electrolyte
e Reduction in cell size
= Better power/weight ratio
= Higher electrode surface areas/volume
e More convenient cell construction
= Techniques similar to MCFC construction
= Electrolyte layer may double as gas seal
« More efficient use of ammonia fuel

=No “bubbling” of gas onto electrode surface - better
mass transfer

=No ammonia into electrolyte means less crossover




Planar Cell Design

anode current collector (Ni wire mesh)

stainless steel housing
pressed nickel anode

NH; inlet NH; exit
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Planar Cell Assembly
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Cell Potential (V)

Planar Cell Performance
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Planar Cell Performance
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e INncreased power density achieved
*30% increase from 40 mW/cm?2 to 52 mW/cm?2
=Higher open circuit potentials

= Possible further increase possible with attention to
mass transfer issues at high currents

e Mass transfer limitation possibilities

= Electrode porosity insufficient?

=Too much/too little electrolyte wicking into electrodes?
e Reduced fuel/air leakage and/or crossover

=Higher OCV

= Molten salt/matrix seal appears effective
eFuture work: electrode catalysts, electrolyte matrix
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Questions/Discussion
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