Oregon Sustainable Energy, LLC

GUANIDINE

Safe, Clean & Flexible

Albert Einstein

"The significant problems we face today cannot be solved at the same level of thinking we were at when we created them"

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Properties of an Ideal Fuel

- High Energy-Density
- Safe to Handle
- Practical to Store & Distribute
- Clean & Non-polluting
- Flexible

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Best Energy Sources

Often not near grid
 Wind, Solar, Water, BioMass
 Transmission Losses

Long distances

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Ammonia Needs:

A More

Safe and Practical

Means of

Storage and Distribution

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Ammonia is:

An Excellent Fuel
 > High Specific Energy
 > High Octane
 > ICE Usage Easy

- No Carbon-based Emissions
- A Hydrogen Carrier ?

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Ammonia: *Fuel History*

- Rudolf Diesel 1895
 - Diesel engine
- Norsk Hydro 1934
 - Hydroelectric ammonia
- Belgium WW II
 - Ammonia-fueled buses
- US Army 1960
 - Ammonia- nuclear reactors

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Ammonia Vehicle - 1933

Ammonia fuelled car, Rjukan 1933

Source : "Worth a try" Research and Development in Norsk Hydro through 90 years", Oslo 1997 (page 125)

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

But Ammonia is:

- Toxic and Corrosive
 Expensive and Dangerous
- Distribution
 - Limited only in U.S.
- Fertilizer Usage Risks
 Only in the U.S.
- Ammonia Plants
 - Urea Nearly Always (Gosnell KBR)

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Major Obstacles to Use

• Safety and Handling

Storage and Distribution

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

A Possible Solution?

Guanidine

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Safe

A Solid material *Melting Point* 122° F
Non-explosive
Low toxicity
Low flammability

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Clean

• Fresh Water Electrolysis

- \succ CO₂ neutral
- \succ CO₂ captures 1 and releases 1

Salt Water Electrolysis

- For each ton of Guanidine
- \succ Captures 4.4 tons of CO₂
- \succ Sequesters 3.4 tons of CO₂

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Flexible

Storage and Distribution Existing systems A Pure Fuel Solid or liquid > High energy density Blended Soluble in water or ethanol ➢ G11 − replace gasoline in E85

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Some Advantages

Specific Energy

> 3.58 kWhr/kg

2015 FreedomCar Target - 3.0 kWhr/kg

Effective Energy Density

- > 4.7 kWhr/L
- Ammonia 3.5 kWhr/L

Urea Eutectic Mixture

- > Easy to Handle
- ➢ Low M.P. ~30° C

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Guanidine: <u>History</u>

- 1861
 - Chemistry published
- 1866
 - > Hydrolysis demonstrated
- 1931
 - German patent
- 1950
 - American Cyanamid Co
- 1963
 - Monsanto patent

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Guanidine: A Fuel

Ammonia Fuel Paths

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Guanidine Synthesis

 $\underline{2 \text{ H2O}} \Rightarrow \underline{2\text{H2+O2}}$

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Energy Densities

Guanidine*

Guanidine has over 6X the energy density of hydrogen stored in 10,000 psi gas tanks. *Assumes using waste heat and exhaust water

From:

J. Milliken, Grand Challenge for Basic and Applied Research in Hydrogen Storage, June 2003

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Fuel Comparison

<u>Property</u>	<u>Guanidine</u>	<u>Urea</u>	<u>Ammonia</u>	<u>Hydrogen</u>	
Energy Density	4.7 kWhr/L	3.0 kWhr/L	3.5 kWhr/L	0.8 kWhr/L @ 10,000 psi	2015 FreedomCar Target
Specific Energy	3.58 kWhr/kg	2.35 kWhr/kg	5.2 kWhr/kg	1.2 kWhr/kg	3.0 kWhr/kg
H:C Ratio*	9:1	6:1			
Safety	Good	Excellent	Poor	Poor	
Storage	Solid (MP 50C)	Solid	Gas (~10 bar)	Gas (5-10 K psi)	
Distribution	Easy	Easy	Difficult	Expensive	
Water Solubility	Infinite	.05 kg/l			
Ethanol Solubility	Infinite	1 kg/l			
Toxicity	Low	Low	High	None	

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

CONFIDENTIAL © 2006 Oregon Sustainable Energy, LLC

* When burned

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

G-Reactor™

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Guanidine: An ICE

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE

Development Program

Phase I

Guanidine Chemistry & Catalysts

- Laboratory MicroChannel Reactor
- Oregon Graduate Institute
- DOE/ORNL Work For Others

Next Phases

- Prototypes
- Build the Company
- Strategic Partnering

OSE GUANIDINE – SAFE, CLEAN & FLEXIBLE