Progress on Hydrogen Hubs

Jack Robertson and Preston Michie NW Hydrogen Alliance

Presented at 6th Ammonia Fuel Conference Kansas City, MO 10/12/2009

A Hydrogen Hub is ...

- A MW-scale energy storage approach using NH3 as the storage medium
- A means for producing value-added products while meeting energy storage / generation needs
 - Excess NH3 for agriculture (or fuel)
 - Pure O2 by-product stream
- A programmable system load or capacity source
- All the above

H2Hubs Feasibility Study

- Sponsored by several NW power companies and Bonneville Power Administration
- Focus primarily on technical feasibility, but examined estimated costs to compare with alternatives
- Emphasis on "off-the shelf", commercial technology and hardware
- Revision 1.0 issued Sept 30, 2009

Hydrogen Hub Concept

Ammonia Can Be Cheaper Than Diesel

Year

Types of H2Hubs – Two Extremes

Aggregated (On-site NH3 synthesis)

- NH3 synthesis/storage runs that part of year when electric power is not generate
- Generally, a "capacity" resource
- Some NH3 and O2 sales to offset costs
- By-product O2 stream available to increase generator efficiency

Dis-Aggregated (Central NH3 synthesis)

- Year-round NH3 production
- Feeds multiple generator hubs; including onsite generation option
- Surplus NH3 sold as fertilizer
- By-product O2 stream can be sold

Hydrogen Hub Concept

On-Site NH3 Synthesis Case

Central Synthesis/Satellite Hubs

H2Hub Cases Examined

Case	Power Output	Synthesis Capacity	NH3 Storage	NH3 Annual Sales	Estimated Capital Cost
1 – Capacity Resource	10 MW up to 54 hours	10 tpd NH3 (~5 MW input)	260 tons	~3000 tons	\$22 M
2 – Energy Resource	25 MW for up to 16 hours X 6 days X 8 weeks (768 hours)	~30 tpd NH3`(~15 MW input)	9,200 tons	-0-	\$62 M
3 – Agri- Energy	10 MW up to 54 hours	100 tpd NH3 (~50 MW input)	1000 tons agricultural + 260 tons 10 MW capacity	~30,000 tons	\$109 M

Note—All cases assume annual electric rate contract at 3-5 cents Per kWh to keep operating costs and NH3/O2 sales costs competitive

10MW H2Hub Conceptual Design

Hardware Choices (Current and Developmental)

- NH3 Synthesis
 - Electrolyzer + Haber-Bosch
 - Solid State Ammonia Synthesis
- NH3 Storage
 - Standard ~250 psi pressure tanks
 - "Super-safe" tanks
 - Large atmospheric tanks
- NH3 GenSets
 - Converted diesel (95% NH3)
 - Spark ignited
 - Combustion turbine
 - Advanced, high-efficiency designs

Preliminary H2Hub Conclusions

- Lots of energy can be stored compactly as NH3
- Converted diesel gensets are a likely initial choice for H2Hubs
- H2Hubs can be programmed to provide power benefits such as power on demand or synthesis load on/off
- Cases 1 (peaking capacity) and 3 (agri-energy) appear initially to be economically viable, but need further study
- Case 1 capital costs appear to be competitive with major competitors, such as gas turbine peakers
- Role and economics of by-product sales, primarily O2, need to be studied further
- A carbon-constrained future would align well with H2Hub approach

More Information at ...

www.HydrogenHub.org

- Includes
 - Draft report / analysis
 - Graphics
 - References / Bibliography

