

Carbon-Footprint Based Merit Analysis of Ammonia as Hydrogen Carrier and for Energy Storage

C. B. Panchal

E3Tec Service, LLC

cpanchal@e3-tec.com

www.e3-tec.com

NH3 2015 Conference

Argonne National Laboratory

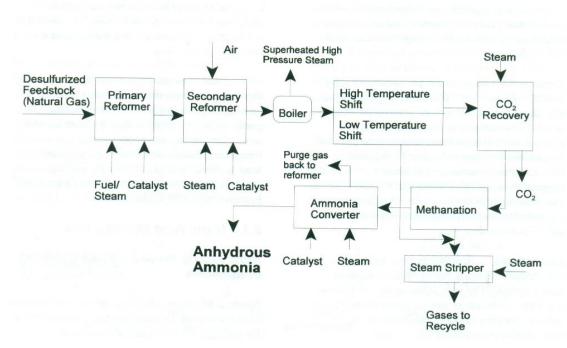
Investing Existing Finite Carbon-Based

Energy & Material Sources on Future

Sustained Energy Supplies

Presentation Outline

- Today's NH3 Market and Production
- Energy Consumption in Commercial Process
- Energy Consumption using Renewable Energy
- C-Footprint Profile of NH3 Production
- C-Footprint Frame Work of NH3 End Use
- Summary & Recommendations



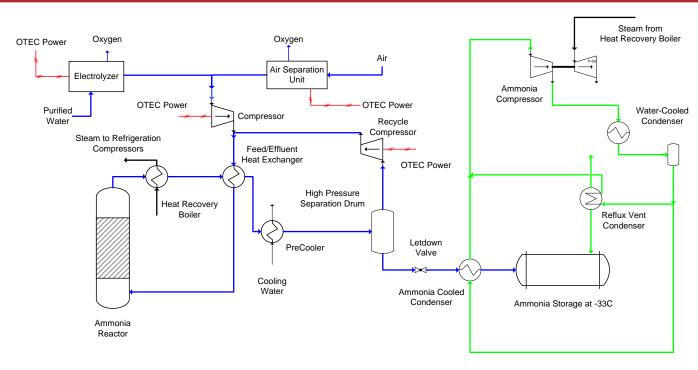
Today's NH3 Market & Production

- Global Production ~ 156 Million Metric Ton/y (MMTA)
- Global production based on NG, Petroleum Product &Coal
- US Consumption ~ 16 MMTA
 Production ~ 9.6 MMTA (NG feed stock)
- Average 2015 price in Midwest \$500 to \$650/T

Commercial NH3 Production Based on NG SynGas Process

Energy Consumption:

Process Heat 7,250 kWh/T NH3


Electricity (Primary energy) 1,825 kWh/T NH3

Total 9,075 kWh/T NH3

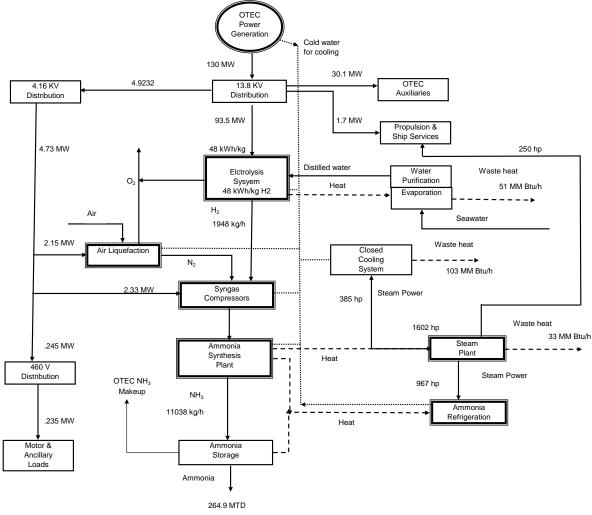
Ref: Energy & Environment Profile of the US Chemical Industry, DOE Report, 2000

NH3 Production Using Renewable Energy

Energy Consumption for OTEC Plantship:

Electricity (Haber-Bosch Process)

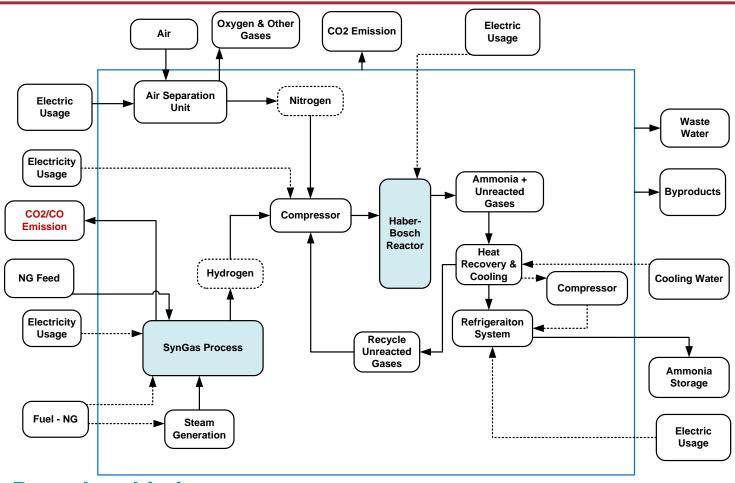
8,917 kWh/T NH3


Electricity (NHThree™ Solid State Process)

7,000 kWh/T NH3

Ref: OTEC Plantships for Production of Ammonia as Hydrogen Carrier, ANL Report, 2009

NH3 Production Using OTEC Plantships Energy Profile


Significance of C-Footprint Analysis

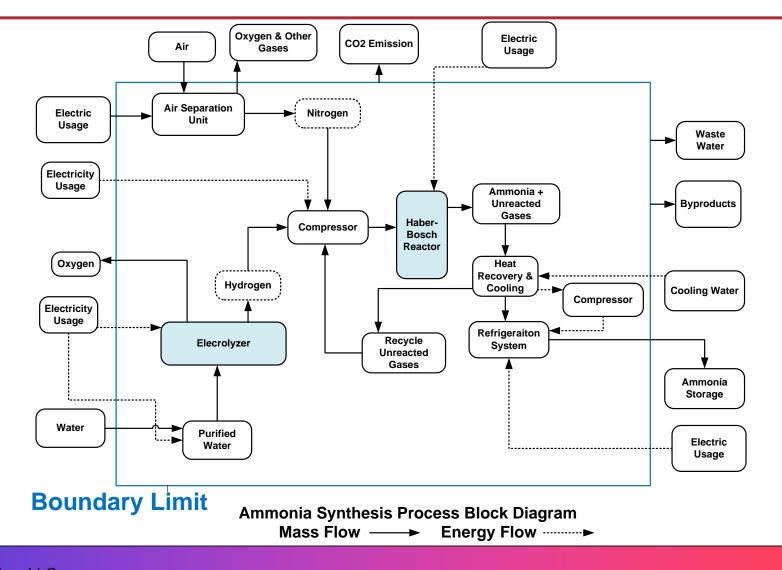
- Focus on long-term realistic scenario of NH3 as hydrogen carrier and energy storage
- Realistic C-Footprint analysis without performing an extensive Life
 Cycle Analysis (LCA)
- Identifies elements of high C-Footprint that would suggest alternate approach of production and end uses
- Identifies opportunities of energy efficiency and alternate energy sources – such as combined heat and power or process intensification or renewable energy

C-Footprint Analysis

Process Block Diagram of NG-Based Commercial Plants

Boundary Limit

Ammonia Synthesis Process Block Diagram
Mass Flow


► Energy Flow

►

C-Footprint Analysis

Process Block Diagram of NH3 Synthesis using Renewable Energy

C-Footprint NH3 Production

Initial Target for Global Reduction of CO2 Emission

- Commercial Haber-Bosch Process
 - CO2 Emission (Global scale)
 2.4 T CO2/T NH3
 - > CO2 Emission (Energy Efficient) 1.7 T CO2/T NH3
- Global NH3 Production ~ 156 MMTA
 - CO2 Emission ~ 375 MMTA
- Renewable Energy (Electricity from Renewable Energy, such as OTEC)
 - Haber-Bosch Process 8.9 MWh/T NH3
 - Solid State NH3 Synthesis 7.0 MWh/T NH3

Need to perform C-Footprint analysis for renewable energy to determine cross-over period when CO2 emission occurred in manufacturing of renewable energy system is balanced out for net CO2 emission reduction

NH3 End Uses

- Fertilizer and Chemicals
 - Replacing commercial C-based production
- Direct Combustion Fuel
 - Replacing petroleum liquid transportation fuel
- Hydrogen Carrier
 - > H2 fuel-cell transportation and distributed power generation
 - Replacing H2 from NG in petroleum and petrochemical industry
- Electric Power
 - Combustion turbine most likley combined cycle
 - Fuel-cell power

Need to perform C-Footprint analysis for merit-based justification of NH3 end uses

Summary

- ➤ Initial target should be to replace C-based NH3 production for fertilizer and chemical applications
- NH3 is a promising candidate for effective utilization of renewable energy such as OTEC
- C-Footprint can be performed for production and end-use of NH3 without full Life-Cycle Analysis (LCA) that would accelerate NH3 as energy and hydrogen carrier

Last comment is based on on-going two projects of conversion of captured CO2 to value-added alkyl carbonates

Suggestive Recommendations

- Global initiative for green NH3 production with specific targets
 - First target to replace NH3 plants using coal and petroleum products
- C-Footprint analysis for NH3 production and end uses that would justify emerging technologies
- The island states could be the first target for introducing the NH3based energy technologies

Investing Existing Finite Carbon-Based

Energy & Material Sources on Future

Sustained Energy Supplies