

Hydrogen Energy Value Chains: Ammonia as an enabling hydrogen carrier

David Harris Research Director: Low Emissions Technologies

CSIRO ENERGY www.csiro.au

Outline

CSIRO - Australia's national research agency

Hydrogen re-emerging as a clean energy carrier

New science and technology opportunities

Leveraging existing industries and infrastructure

Hydrogen energy value chains - amplifying the impact of renewables

- Low emission pathways for power, manufacturing, transport
- Challenges of scale
- Ammonia's role as an energy bridge

CSIRO

Commonwealth Scientific and Industrial Research Organisation

People 5000

Locations 55

Business Units 9

Budget \$1B+

CSIRO Low Emissions Energy Research

R&D supporting the transition to a high efficiency, low emissions energy future

Emissions Management and CO₂ capture

- Emissions characterisation, reactions & impacts
- CO₂ capture technologies for current and next generation energy systems
 - Post combustion capture (PCC), membrane systems (CO₂/H₂,CMR systems)

Thermal and Electrochemical Technologies

- Next-generation technologies for coal & renewable fuels
 - Gasification, DICE, Fuel Cells ...
 - Waste to Energy (biomass, MSW etc)
 - Hydrogen energy systems renewable and fossil fuel sources
- Hybrid Energy Systems
 - Batteries, fuel cells, electrolysers, energy storage, system integration

Solar Energy Systems

- Solar Thermal systems for power generation, energy storage, hybrid processing technologies
- ASTRI ~\$120M collaborative program: CSIRO, 6 Universities, International partners
- PV materials and cell design

Hydrogen energy value chains

H₂ 2019: What's changed?

Global market pull

- Japan's 'Basic Hydrogen Strategy'
- Korean hydrogen roadmap
- EU initiatives and demonstrations

Technology developments and advances

- FCEVs: Range increasing, cost decreasing
- Electrolysers, PV electricity, etc: cost decreasing
- Carrier technologies: ammonia cracking, hydrogen tankers, new materials

Increasing acceptance of energy alternatives across sectors (including governments).

Andrew Forrest's Fortescue joins hydrogen push with CSIRO tie-up

Increasing National Focus

Development of an Australian hydrogen energy industry

"Hydrogen could be Australia's next multibillion dollar export opportunity" Prof Alan Finkel, Aug 2018

Hydrogen Cost* Implications

\$/kg

- Many H₂ technologies are commercially mature.
- Market Activation is a key priority
- Requires infrastructure and hydrogen supply
- Export opportunities support scale and cost improvements

Japan and Korea focus on supply chains, infrastructure and scale

Japan⁽¹⁾:

- Hydrogen stations cost approx ¥400- 500M (US\$3.8 M to \$4.7M) to build.
 - Government contribution 50%
 - Seeking to halve cost by 2020
 - Facilitating incorporating hydrogen stations into Japan's existing 31,000 gas/petrol stations

• Korea⁽²⁾:

- Target 1200 FCEV refuelling stations by 2040
- FCEV manufacture 80,000 by 2022, 6.2M by 2040
- By 2040: 40,000 FC Buses; 30,000 Trucks; 80,000 Taxis

Australian Hydrogen Energy Initiatives... Several intersecting value chains

Hydrogen Energy Supply Chain Project

Low emissions hydrogen from coal gasification with CCS

CSIRO hydrogen production, storage, transport and utilisation technologies

- Novel technologies for H₂ and NH₃ synthesis
- Ammonia cracking technology
- Direct ammonia utilisation (engines and fuel cells)

CSIRO Hydrogen Energy Systems Future Science Platform

- Step change technology opportunities across the value chain
- ~\$5Mpa, 3years, collaborative forward looking science & technology opportunities

ARENA - Renewable Hydrogen for Export Research Fund

• \$22M for hydrogen energy supply chain technology research

Hydrogen Mobility Australia

Industry initiative to accelerate commercialisation of hydrogen technologies

Industry-scale projects and demonstrations – e.g. ATCO, FMG, Gladstone, Toyota....

The Hydrogen Value Chain

Building on existing industries and infrastructure

Make it

Move it

Use it

Hydrogen Value Chain(s)

Complex network of opportunities

Make it

Store/ Move it

Use it

Enabling H₂ energy systems

New renewable energy export industry

electrolysis

Reducing cost of

Scalable, intermittencyfriendly NH₃ production

Decarbonisation of heavy transport and distributed power

Gasification routes for coal, biomass & wastes to hydrogen

Other carriers: methanol, SNG...

Ammonia cracking for decarbonisation of vehicle transport systems

Concentrated Solar Thermal technologies

Integration of solar energy in thermal and chemical processes

SMR & WGS processes
Solar syngas and H₂
25% solar energy embodied
Pilot scale demonstrated to 600kW_{th}

Heliostat and Receiver Technologies

Gasification: a flexible enabling technology

KHI "CO₂ free hydrogen chain" Gasification of Australian brown coal with CCS

29.8 yen/Nm3

Hydrogen carrier	9%
Loading base	11%
Hydrogen liquefaction	33%
Hydrogen pipelin	ie 1%
Hydrogen	e 1% 29%
Hydrogen	

Hydrogen capacity: ~770 tonne/day

Make it

Move it

CO₂-neutral hydrogen carriers

Novel direct ammonia production technology catalytic membrane reactor

- Prototype proof of concept facility developed
- Low pressure (10-30bar)
 - ~25% lower energy input than Haber Bosch process
- Decentralised, modular process
- High conversion rate and yield
- Collaborative project with ARENA support (~\$2.8M project)
- Project partners: Orica, GRDC, ARENA, CSIRO

A route to solar powered nitrogenase

Harnessing biological pathways for ammonia production

Make it

Use it

Catalytic Membrane reactor Single stage production and separation of hydrogen

- Separation of H₂ from ammonia-derived mixed gas streams
- This concept can also be applied to NG reforming, CO shift, or any process with H₂ as a product.

V in substrate: USD 180 m⁻² Catalytic layers: USD 100 m⁻² plus manufacturing

Pilot Ammonia 'cracking' facility

Gen 1 system:

- SIEF funding
- Membrane area 0.3 m² (19 x 50 cm tubes \approx 15 kg/day at 80% yield)
- 2-3 cars/day
- Located at CSIRO Brisbane, commissioned 2018

Gen2 plant:

- 3 m² of membrane area (100 m)
- 150 -200kg/day
- Development and demonstration facilities supporting commercial development

Fuel cell vehicle refuelling with ammonia derived hydrogen

8 August 2018

Source: Renewable Hydrogen Pty Ltd Innovation patent: 2016101350

Ammonia as an engine fuel

Ignition and combustion R&D

200 bar, 9 litre spray chamber, ignition and combustion rig

18kW, 4 litre, single cylinder (200-850 rpm)

65kW, 3.3 litre, 3 cylinder (900-2200 rpm)

67kW GT (96000 rpm)

Hydrogen energy systems

Integrating and leveraging across industry sectors

Power generation: Combustion (internal combustion engine or turbine)

Power generation: Direct conversion (High-temperature fuel cell)

H₂ production: Decomposition and H₂ purification (FCEV etc)

Hybrid H₂ and power systems – adaptive power and storage

Progressing Low Emissions Energy

- Need all energy options to create a sustainable and affordable energy portfolio
- Driving and coordinating Australia's role in development and deployment of low emissions and renewable energy technologies and systems globally
- Creating a whole new industry around hydrogen energy systems and exportable renewables via ammonia and other suitable carriers
 - Ammonia industry opportunity to integrate renewable hydrogen at scale
- The Hydrogen Energy space is broad, and not limited to a single industry sector
 - Distributed energy commodity in power, transport, industry, and agriculture needs new technologies and value chains
 - Real opportunities for emissions reduction, sector coupling, and new industry development
- National and International partnerships are needed to facilitate research, development, demonstration and deployment

Further Information:

David Harris
Research Director: Low Emissions Technologies
CSIRO Energy

david.harris@csiro.au

CSIRO ENERGY www.csiro.au

