

7/12/2022

NETSCo & ABB – Maritime Ammonia Synergies Using Inland Waterways

Global Megatrends Driving Marine Electrification

Exponential changes are expected

Digitalization

Automation and Robotics

Urbanization

Global Economic Shift

Carbon Free Resources

Environment

Pathway to carbon-free shipping

Transitions in fuel and technology

Evolution of Ship Propulsion

Pathway to carbon-free marine vessels

Mechanical propulsion

- Diesel engines, gearboxes and controllable pitch propellers for propulsion
- Separate auxiliary engines for electricity generation for ship use

Historical

Diesel electric system

- Diesel-Generator sets to produce electricity to common grid for propulsion and ship use
- AC or DC Power Systems

Proven but Not Optimal

Hybrid electric system

- Diesel Generator sets to produce electricity to common grid for propulsion and ship use
- Batteries or/and Fuel cells to reduce emission or provide zero emission to parts of the operation

Modern Standard (Commercially Mature)

Fuel cell / battery electric

- Batteries or/and Fuel cells to provide all energy to enable zero emission for <u>all</u> <u>operations</u>
- Simple and complex charging systemsall power comes from shore power or alterative fuels

Early Adopters (New Technology)

Electric propulsion is a future-proof concept

Path to improve energy efficiency and to decarbonize shipping

Azipod® electric propulsion

Additional 10% increased energy efficiency with Azipod® electric propulsion

Energy storage

Hybrid or fully electric operation with stored energy and charging solutions

Fuel cells

Zero-emission operation with hydrogen fuel cell power system

Shore connection

98% + greenhouse gas emissions eliminated in port call

Well to Wake: Outlook

Benefits and Challenges

Path from Well to Wake for Green Ammonia

Well (NH3)	Storage Aboard (NH3)
	☑ Requires modest cooling (-33C) or pressure (15 bar)
Possible eventual pink production	→ 3.6x volume of VLSFO
✓ Virtually endless supply with H2 from sea and N2 from sky	→ 2.2x weight of VLSFO
7. Virtually Charess supply with 112 from sea and 142 from sky	→ Safety challenges
Distribution (NH3)	Wake (NH3)
∠ Currently world's 2nd most produced chemical	✓ Use in slow speed diesel engine or SOFC (all under development)
∠ Existing gas vessels	→ Ammonia 99%+ purity yields highly predictable performance
∠	☑ Requires a pilot fuel
∠ Existing standards ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ △ ∠ △	
	Green Ammonia

Maritime Partners – Hydrogen One

Methanol Fuel Cell Towboat

Ammonia Opportunities Inland Waterways

Speaker: Jan Flores, Vice President jflores@netsco.us

Northeast Technical Services Co., Inc. (NETSCo) was formed in 1984. NETSCo offers a broad range of naval architecture and marine engineering services to support vessel construction and modifications from conceptual design to delivery. NETSCo engineers have taken a dedicated focus on developing solutions in support to the GHG reduction.

Agenda

- US Inland Waterways Statistics
- US Emissions Regulations
- Ammonia Supply Infrastructure
- Applications / Hydrogen Carrier

Inland Waterways Transportation Statistics

- Waterway Transportation 578
 Million Tons
- Barge Tow Ton-Mile 41 USG
- Rail Cars Ton-mile 57 USG
- Trailers Ton-mile 186 USG
- 5,500 towboats/tugboats
- 6.2 million tons CO2

Source: The American Waterway Operators

US Adopting IMO 2050 GHG Strategy

- ➤ MARPOL is applicable to vessel over 400 GRT, but most US Towboats don't carry MARPOL Certificates.
- ➤ OFTEN MARPOL aligns with EPA, but EPA has specific requirements.
- ➤ EPA Marine Emissions Regulations followed Over the Road regulations (e.g., EPA Tier 3 & EPA Tier 4 [IMO Tier III])
- Clean Shipping Act of 2022 basically tries to align US with IMO 2050.
- ➤ On August 5, 2021, EPA announced plans to reduce greenhouse gas (GHG) emissions with 2050 0 emissions target from over the road vehicles through a series of rulemakings over the next three years. The first rulemaking finalized on Dec 2021.

Ammonia Supply Infrastructure US

Fuel Parameters Comparison

	MGO	LPG (Propane)	LNG	Methanol	Ammonia	Hydrogen
Boiling Point (amb) - C	Liquid	-42	-162	Liquid	-28	-253
Energy Density (MJ/kg)	47.2	46	50	19.9	18	120
Energy Density (GJ/m3)	<mark>35.9</mark>	25.3	23.4	15.8	<mark>12.7</mark>	8.5
Carbon Fuel Coefficient (CO2/F)	3.206	3.000	2.750	1.375	0	0

Ammonia (NH₃) as a Hydrogen (H₂) Carrier

- ➤NH₃ molecular composition will pack 45% more hydrogen per unit volume than H₂
- ≥85% efficiency H₂ extraction
- ➤ Ammonia storage and transport regulations (Class) are fully developed Fuel regulations in progress

Towboat Propulsion Arrangement

- Traditionally fitted with 2 to 3 Med (900 rpms) to High Speed (1600 rpms) diesel engines.
- ➤ High horsepower med-speed is preferred and there is a large number of 2-stroke EMD engines in the water ways.
- ➤ Reduction Gear → Tailshaft → FFP

How do we us Ammonia as fuel?

> Internal Combustion Engine (ICE) Route

- NH₃ injection in diesel ICE →Increase in NOx
- H₂ injection in diesel ICE has many advantages requires ⇒system to crack ammonia.
- Ammonia fuel ICE Wartsila 4 stroke under development → reduce range NOx abatement.

> Fuel Cell Route

- PEM fuel cells → electrification → cracking NH₃
- SOFC → electrification → directly feed NH₃ → not commercially available yet.

Anode: $2NH_3 + 6OH^- \rightarrow N_2 + 6H_2O + 6e^-$

Cathode: $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$

Overall: $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$

Take aways

- ➤ Waterborne transportation within waterways more efficient than Rail and Over the Road.
- ➤ Waterways transportation Carbon footprint is large with opportunities for reduction.
- ➤ No current GHG emissions regulation for Marine Inland Waterways transportation.
- ➤ Expect the forthcoming Over the road GHG regulations will spill over Marine.
- Ammonia storage a mature technology.
- ➤ Ammonia is an efficient method of Hydrogen Storage.
- ➤ Ammonia burning ICE is being developed but inefficient.
- Ammonia burning SOFC is promising but development lags.

Naval Architecture & Marine Engineering

Developing Solutions for Complex Maritime Challenges

Naval Architecture & Marine Engineering

Project Management

3-D Scans & Surveys

Ship Conversion, Modification, Retrofit & Newbuild

Environmental Regulatory Compliance

Offshore Wind Engineering Services

Marine Software Development

Ballast Water Management

Consulting & Advisory Services

Jan Flores, Vice President jflores@netsco.us

