

Combustion of Ammonia and Ammonia-Hydrogen Mixtures for Gas Turbines

19th Annual Ammonia Energy Conference

Rob Steele – EPRI LCRI Power Generation Co-Leader

Image: Market with the second state of the second state

The General Difference in Diffusion vs DLN Technology

GTI ENERGY

Gas Turbine Hydrogen Challenges

GTI ENERGY

How do the Various Fuels Compare?

Hydrogen burns 9 times faster than Methane & 42 times faster than Ammonia

© 2022 Electric Power Research Institute, Inc. All rights reserved. © 2022 GTI Energy. All Rights Reserved

GTI ENERGY

DOE Funded Project: Investigation of Ammonia for Combustion Turbines (IACT)

Goal

- In-depth evaluation of ammonia as a zero-carbon fuel for power generation
 - Achieved through an iterative physics-, computational- and experimental approach resulting in a pilot combustor design validated through tests

Challenges with ammonia

- Safety considerations with ammonia
- Ammonia kinetics, ignition and flame-holding
- NOx generation

Total DOE Project Value ~\$ 3.75M including \$750K LCRI cost share

Project Team Members

- University of Central Florida Over 90 publications of high-fidelity molecular dynamics of combustion reactions research used to develop kinetics of combustion derived by variety of fuels
 - Expertise in shock tube testing to develop ignition delay, reaction rate measurements, and species time-history measurements using absorption diagnostics
- Georgia Tech University Dedicated 50,000 square foot, \$30 million combustion test facility
 - Expertise in experimental investigation of flame anchoring, acoustics, emissions, performance, and kinetics of a combustor at elevated pressures and temperatures
- CRAFT Tech Developers of multi-element, unstructured CRUNCH CFD code used to perform complex analysis with chemical kinetics and particle modeling
 - Knowhow in developing species specific kinetics mechanism for combustion CFD based on experimental shock tube testing

UNIVERSITY OF CENTRAL FLORIDA

LCRI Power Gen Initiated Multiple Tasks Prior to DOE Award

- Yellow = LCRI project testing at UCF plus CFD at CRAFT Tech
 - Green border completed under LCRI
 - Red border scope transferred to DOE contract

EPC

Burning Velocity Testing Results (LCRI Effort)

- UCF spherical, constant volume test rig for burning velocity tests
 - Schlieren diagnostics
- 5 bar with three different NH₃:H₂ blends completed
- Expected trend of increased flame speed with increased H₂ content
- Compared to kinetics mechanism predictions

CRAFT Tech CFD Analyses Tasks Completed

LCRI LOW-CARBON RESOURCES INITIATIVE

- Sample case defined and model generated using UCF_LCRI.mech
 - Tohoku University tests
 - Exhaust emissions data available
- 2-D axisymmetric model generated in CRUNCH CFD[©] with MTS-FPV approach
 - Swirl non-premixed NH₃ and air at stoichiometric conditions

Okafor, E.C., Somarathne, K.D., Hayakawa, A., Kurata, O., Iki, N. and Kobayashi, H., "Towards the Development of an Efficient Low-NOx Ammonia Combustor for a Micro Gas Turbine", Proceedings of the Combustion Institute, Volume 37, Issue 4, 2019, Pages 4597-4606.

- Detailed mechanism, two FPV and one MTS-FPV cases run
 - Areas for improved FPV approach identified
- Emissions results reasonable compared to data

FPV = Flamelet Progress Variable
MTS = Multi-Time Scale

Parameter	CFD (Raw)	CFD (at 16% O ₂)	Test Data (at 16% O ₂)
Temperature [K]	1209	1209	~1100
NO [ppmv]	3065	730	~400
NO ₂ [ppmv]	28.58	6.81	~29
N ₂ O [ppmv]	1.13	.27	~1

Path Forward

- LCRI project subcontracts terminated 9/1/22 (CRAFT Tech) and 9/9/22 (UCF)
 - Final report to be submitted by 10/15/22
- Remaining LCRI project scope included in DOE project
 - Complete UCF flame speed and IDT testing at higher pressures
 - Complete UCF shock tube IDT testing at higher pressures with laser diagnostics
 - Update detailed kinetics mechanism to better match data
 - Generate reduced mechanism for CFD analysis
 - Re-run CFD analysis case with updated mechanism
- DOE project to expand on LCRI work with burner design and testing

Questions?

www.lowcarbonLCRI.com

11