

Aerospace Systems Design Laboratory

Ammonia as a Liquid for the Future of Aviation

Jay Kapat and Marcel Otto Center for Advanced Turbomachinery and Energy Research University of Central Florida, Orlando, FL

Funded Through NASA ARMD <u>University Leadership Initiative</u> Under Strategic Thrust – Zero Emission Aviation

November 16, 2022

BOEING PURDUE

The Team

The Team

Schmitt

Background & Rationale Why this approach?

Ammonia as a Liquid for the Future of Aviation

Why Ammonia for Decarbonization of Aviation?

- When NASA asked for proposals under the thrust area "Zero Emission Aviation"
- We asked ourselves what is meant by "Zero Emission Aviation".

_ _	CO ₂ (g/s), cruise	~1800
• Should we aim for:	NOx (ppm)	~200
 Zero carbon aviation ? "Net-zero" aviation ? 	H ₂ O (g/s), cruise	~750
 Zero emission of all kinds ? 	NVPM ¹ (µg/m ³)	475

- We approached the project with the objective of eliminating, or at least minimizing, emission of <u>all kinds</u> in the <u>engine exhaust</u>:
 - CO₂
 - NOx (Note: 100-year GWP for $N_2O = 265$; significant ODP)
 - H₂O (contributes to contrails that cause radiative forcing)
 - NVPM (leads to higher contrail formation)

NOx minimization - Let us learn from Power Generation

"Power Generation NOx Tracker" https://www.cecs.ucf.edu/nox/ Supported by Mitsubishi Power

BOEING

PURDUE

SwRI 🖊 nsys 🏽

$$2NO + 2NH_3 + \frac{1}{2}O_2 \xrightarrow{\text{catalyst}} 2N_2 + 3H_2O$$

$$2NO_2 + 4NH_3 + O_2 \xrightarrow{catalyst} 3N_2 + 6H_2O$$

AVIATION AUTHORITY

Aerospace Systems

Design Laboratory

6

 Too much ammonia injection can lead to ammonia emission, referred to as "ammonia slip"

Competing Technologies

Safety? Water in Production?

Adapted from: McKinsey, 2020, "Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation," World Economic Forum, www3.weforum.org/docs/WEF_Clean_Skies_Tomorrow_SAF_Analytics_2020.pdf

UCF

Kerosene Baseline	Battery-electric	H2 fuel cell only	H2 turbine	SAF	NH3
Climate Impact (integrated)	100% reduction	75-90% reduction 50-75% reduction		30-60% reduction _	50-99% reduction
NO _x only	0	0	Potential increase	Same 😑	Almost 0
Aircraft Design	Battery density limits range to 500-1000km	Feasible only for commuter to short-range segments	Feasible for all segments except for flights>10,000 kr	Only minor changes	Feasible for all segments except >5000 miles
Aircraft Operations	Same or shorter turnaround time, weight remains constant throughout a flight negatively impacting range	1-2x longer refueling times for up to short range, special safety standard	2-3x longer refueling times for medium to long-range; special safety standard	Same turnaround times	Same or marginally longer turnaround times
Airport Infrastructure	Fast-charging or battery exchange systems required	LH ₂ distribution and storage with cryocooling are required		Existing infrastructure can be used	Needs NH ₃ distribution and storage, no cryocooling
Global Supply Chain Concerns	Minimal – used in other applications	Supply interruption in Global Aviation		Quality uniformity and scaling, competing land use	Moderate – existing infrastructure (e.g., fertilizer)
Water in Exhaust	0	Yes		Yes	Minimized
GREATER ORLANDO AVIATION AUTHORITY SWRITANSYS () COMPANY CONTRACT OF A C					

Ammonia is		JetA	SAF	? 8
Ammonia 15	CO ₂ (g/s), cruise	~1800	~1800	
more than an	NOx (ppm)	~200	~200	
Enoray	NH₃ (ppm)	0	0	
спегду	H ₂ O (g/s), cruise	~750	~750	
Carrier!	NVPM ¹ (µg/m ³)	475	>475	0

 Table 3. Comparison of Ammonia with Kerosene, Hydrogen and Methanol¹²

Table 2. Flame Characteristics of H₂ and NH₃

Fuel	H2	NH3
Max Lam Flame Speed (cm/s)	291	7
Adiabatic Flame Temp (K)	2400	2075
Flammability Range	0.1-7.1	0.6-1.4
Critical Temp (K), Pressure (MPa)	33, 13	405, 11.3
Triple Pt. Temp (K), Pressure (MPa)	14, 0.07	195, 0.006

13	Properties	Unit	Kerosene	Hydrogen		Methanol	Ammonia
	Stored as	-	Liquid	Gas	Liquid	Liquid	Liquid
	Temperature	°C		Ambient	- 252.9		-33 (or 25)
4	Pressure	MPa	Ambient	69	Ambient	Ambient	0.1 (or 0.99)
.3	Density	kg/m ³	840	39	70.8	792	600
06	Explosive limit	%vol	0.7 to 5	4 to 75	4 to 75	6.7 to 36	15 to 28
		MJ/kg	43	120	120	20.1	18.6
LUAN		MJ/L	35	4.5	8.49	15.8	12.7
H2 content		wt%	N/A	100	100	12.5	17.8
		kg-H ₂ /m ³	N/A	42.2	70.8	99	121
Hydrogen release			Pressure Evapora-		Catalytic decomp @ Temp		
		- N/A		release	tion	> 200 °C	> 300 °C
Ener	gy to extract $H_2(g)$	kJ/mol-H ₂	N/A	-	0.907	16.3	30.6

petal

Georgia Tech Aerospace Systems Design Laboratory

Tech Challenges and Progress Monitors

Ammonia as a Liquid for the Future of Aviation

Tech Challenge I: Minimization of all Emissions

<u>Challenge Definition</u>: *To Minimize* NOx, NH3, and H2O concentration in the engine exhaust under cruise conditions.

The proposed innovation further eliminates emissions of carbon dioxide (CO2) and non-volatile particulate matter (NVPM), which are not tracked anymore. However, ammonia is now introduced and hence its emission is to be monitored and minimized.

Duration: Y1/Q1 to Y5/Q3

Progress Indicators:

(1) Concentration of NOx in the engine exhaust under cruise conditions, measured in ppm or parts per million - *Success criterion*: 5ppm or less, at the end of the project

(2) Concentration of NH3 in the engine exhaust under cruise conditions, measured in ppm or parts per million - *Success criterion*: 20ppm or less, at the end of the project

(3) Flow rate of H2O in the engine exhaust under cruise conditions, that is responsible for contrail formation, measured in g/s - *Success criterion*: 500 g/s or less, at the end of the project

Tech Challenge II: Integration of new Components into Engine and Airframe

<u>Challenge Definition</u>: *To Minimize* adverse impact on engine/airplane operation when new components are integrated into the engine and airframe. <u>Progress Indicators</u>: (1) Total payload decrease, (2) Realized Low Heating Value, (3) Start-up Time.

Tech Challenge III: Minimization of Aircraft and Infrastructure Upgrade and Operational Cost

<u>Challenge Definition</u>: *To Minimize* the cost of upgrade and operation when new technologies are introduced to airports and airplanes.

Progress Indicators: (1) Total fuel cost compared to reference, (2) Airframe cost increase compared to reference, (3) Gate cost increase compared to reference, (4) Dollar per passenger mile increase compared to reference

TECH Challenge I: Minimization of all emissions

• Progress Indicator:

GREATER ORLANDO

AVIATION AUTHORITY

- NOx concentration in engine exhaust under cruise condition
- Action Plan
 - Control with Axial staging and Mixture composition to reduce NOx under test conditions (T2.2.1, M10.1)
 - CFD code, validated against test data, shows lower NOx emission (T2.2.3, T2.2.4, M13.1)
 - Optimization of SCR, Selective Catalytic Reduction, to minimize both NOx and NH3 (T2.3.1, M16.1)
 - CFD optimization under cruise/engine conditions (T2.2.3, M17.1)

SwRI /\nsys

Progress Indicators Summary

- Three Tech Challenges
 - 3, 3, & 4 Progress Indicators each
- Continuously tracked throughout project
- Covering technical and economical aspects
- Task Deliveries feed directly into Performance Indicators and Tech Challenges

Selected Project Details

Ammonia as a Liquid for the Future of Aviation

Multiple Purpose of Ammonia – Energy Carrier, Thermal management & NOx/H2O Control

16

Cracking and Thermal Management

- Cracking is an endothermic process
- The heat needed for cracking can be used to cool the turbine cooling air
- Both processes (catalysis and heat transfer) are surface area dependent

Design Laboratory

- Extended surfaces on either side will be optimized through various means that have been applied by the group in the past, and can be fabricated through additive manufacturing
- This will lead to lower cooling air needs, giving better SFC

BOEING

PURDUE

Three Avenues for Improved Performance

Compressor Intercooling

٠ NH3

GREATER ORLANDO

AVIATION AUTHORITY

- $Work = \int_{V_1}^{V_2} P dV$ •
 - $P \propto T \rightarrow Work \propto T$
 - Less Temperature \rightarrow Less Work

NH3

• $\Delta H_{air} + \Delta H_{NH_3} = 0$

•
$$\Delta H_{fg,NH_3} \approx 1370 \frac{kJ}{kg}$$

High cooling potential of NH3

Waste Heat Recovery

sCO2

•
$$\eta_{ideal} = 1 - \frac{T_{Cold}}{T_{Hot}} \approx 55\%$$

Potential for significant power ٠ extraction from exhaust heat

Aerospace Systems ATER

UCF's Experimental Facility for Probing NH₃/H₂ Kinetics Laser and Optical Diagnostics

2 Shock Tubes – realistic GT conditions with H2/NH3 permits

Flame Speed **Measurements**

GREATER ORLANDO

AVIATION AUTHORITY

Capabilities

•High-Pressure Combustion up to 1000 bar and autoignition and emission species Measurements.

•Toxic impurities NOx, SOx, H₂S, and syngas

•Hydrogen or ammonia combustion with impurities

•Svnthetic and biofuels

SwRI 🖊 nsys 🛞

- •Lasers for studying NOx formation routes
- •High-Temperature

Thermomechanical Response and Surface Chemistry of Novel Materials •High -Pressure and -Temperature Molecular Spectroscopy Data for the Development of State-of-the-Art Non-Intrusive Optical Diagnostics

Planned Experiments

 Autoignition delay time history species

measurements of NH_2/H_2 mixtures at aviation turbine relevant conditions.

- Flame speed experiments with NH_2/H_2 mixtures at high pressures.
- Well stirred reactor and counterflow flame experiments NH₂/H₂ for mixtures.

NH₃ for Air NOx control

PURDUE

and

UCF Shock Tube Laser Diagnostics

Mixtures of

BOEING

Purdue – Experimental Validation under Engine Representative Conditions

GE – Reactor Network Modeling and CFD Analysis for Emission Control

Reactor Network Modeling:

- GE and UCF will use Reactor network modeling to evaluate various combustor architectures.
- Fuel composition used will be based on results of Task 2.1 (Catalytic conversion of ammonia to hydrogen)

CFD with Validated Kinetic Model:

- CFD study using commercial CFD solver (Ansys/Star-CCM)
- Validated Kinetic model developed in subtask 2.2.2 (UCF) will be utilized.

Axially staged fuel injection

Purdue – Experimental Validation under Engine Representative Conditions

Challenge #1: Combustor Design Plays a Critical Role in NO_x and NH_3 in Exhaust

22

Meyer T, Kumar P, Li M. Ammonia combustion with near-zero pollutant emissions . NH3 Fuel Association; 2011. Available online https://nh3fuel.files.wordpress.com/2013/01/2011-meyer.pdf.

Purdue – Experimental Validation under Engine Representative Conditions

Challenge #2: NH_3 in Exhaust can Reform NO_x but the Risk is High NH_3

Slip

GREATER ORLANDO

AVIATION AUTHORITY

Meyer T, Kumar P, Li M. Ammonia combustion with near-zero pollutant emissions . NH3 Fuel Association; 2011. Available online https://nh3fuel.files.wordpress.com/2013/01/2011-meyer.pdf.

Challenge #3: Aviation Conditions

- High P, T and low residence times
- Extremely wide range of conditions
- Actual state of the fuel is not yet known

Aeroengine Conditions that can be Achieved in Purdue HEAT Rig (Compiled by Venkat Athmanathan, 2021)

Design Laboratory

PURDUE

Relevant Statistics from MCO Airport

Reports on Arrivals and Departures Data at MCO Airport Suggest Following Choices (flight counts are for year from SEP 01, 2021 to SEP 01, 2022):

(1) Aircraft: 737-900

Widely used, but no longer in production

Most Common Route on United: KMCO to KIAH (1379 flights)

Engine: CFM 56-7B

(2) Aircraft: 737-8 In production

Most Common Route on United: KEWR to MCO (534 flights) Engine: LEAP 1B

United Airlines currently operates from 9 gates at Airside 3 at MCO, typically gates 40-48.

All gates at MCO are controlled by the Aviation Authority and can accommodate ADG III aircraft, which includes the Boeing 737.

The fuel pit/ hydrant locations will be made available to analysis teams for calculation of cost impacts.

BOEING PURDUE

NH₃ Synthesis & Cracking

- $N_2 + 3H_2 \rightarrow 2NH_3$
 - Haber-Bosch Process
 - Entropically disfavored
 - High temperatures and pressures required
 - Iron and Ruthenium based catalyst
 - N₂ and H₂ must have favorable interaction with surface, but NH₃ desorption must be fast
- $2NH_3 \rightarrow N_2 + 3H_2$

GREATER ORLANDO

AVIATION AUTHORITY

- Reverse Haber-Bosch (RHB) or catalytic cracking
- NH₃ must have favorable interaction with surface, but N₂ and H₂ desorption must be fast

SwRI /\nsys (

Reversible Process – need to optimize

Improved Catalysts

- Most work focused on oxide and pure metals
 - Nitrides of interest but not yes implemented commercially.
- Nano-iron has activity

GREATER ORLANDO

AVIATION AUTHORITY

- Boron-based materials fall in sweet spot
 - Strong experience with boron-based catalysis

0€

0 🛋

0-0

11 74

SwRI /\nsys

6771

• Hydrogenation, CO₂ reduction, hydrodenitrogenation

Optimization & Analysis of the Turbomachinery

• Optimization based on genetic algorithms:

Joly, Verstraete, Paniagua, 2013, http://doi.org/10.1007/s00158-013-0987-5

5 Airfoil

Sections

Puente, Paniagua, Verstraete, 2015, https://doi.org/10.1016/j.apm.2014.07.003

GREATER ORLANDO

Lean -

Lean -

 β_1

 β_2

sCO2 Waste Heat Recovery

Ammonia as a Liquid for the Future of Aviation

sCO2 Waste Heat Recovery (WHR) Cycle – System Integration

29

System Modeling & System Impact

Ammonia as a Liquid for the Future of Aviation

Recent Relevant Activities (from ASDL)

- IEIR Study:
 - Independent industry experts engaged in reviewing GT modeling to project vehicle classes to the 2037 time frame
- Long Term Aspirational Goals for CAEP (LTAG):
 - One of three key legs of future aviation goal setting (fuels, operations, and <u>technology</u>)
 - Dr. Mavris is the co-lead for aircraft technology
- Electric Propulsion Flight Demonstrator (EPFD) Systems Analysis of Advanced Concepts:
 - To understand potential benefit of proposed vision systems relative to
 established program goals
- Continuous Lower Energy, Emissions, and Noise (CLEEN) System Level Assessment:
 - Technology and vehicle modeling to understand long term impacts of novel technologies to US fleet
- NASA Environmentally Responsible Aviation (ERA)
- NASA ULI: OSU and IZEA

Common analysis framework developed

- Starting point vehicles in our analysis (B737-8)
- Common framework for analyzing all of the concepts

Transient System Modeling with T-Mats and IDAES

IDAES (Institute for the Design of Advanced Energy Systems) model.

The open-source software

Capabilities: -- static and dynamic simulation of

- full range of advanced fossil energy systems
- chemical looping and other transformational CO₂ capture technologies

BOEING

PURDUE

• supercritical CO₂ Power systems.

The IDAES framework can be used for:

- process synthesis and conceptual design, including process intensification,
- process design and optimization, including process integration,
- process control and dynamic optimization,
- using advanced solvers and computer architectures,
- automated development of thermodynamic, physical property, and kinetic submodels from experimental data,
- integration of multi-scale models,

GREATER ORLANDO

AVIATION AUTHORITY

- comprehensive, end-to-end uncertainty quantification, including stochastic optimization,
- · maintaining complete provenance information, and
- the ability to support multiple scales, from materials to process to market.

SwRI /\nsys 🛞

32

https://idaes.org/

Ideas architecture:

Aerospace Systems 🗲

Design Laboratory

MAN

Assessment of Airport Ground Infrastructure

- Work with stakeholders to examine airport infrastructure
 - Use literature for broad assessment
 - Work with an airport partner to examine specific needs
 - Author preliminary plan for infrastructure changes
- Compare against other projections of sustainable fuel upgrades
 - Sustainable aviation fuel (SAFs)

SwRI /\nsys

Hydrogen, liquid or gaseous

GREATER ORLANDO

AVIATION AUTHORITY

Source: Moriarty and Kvien, "U.S. Airport Infrastructure and Sustainable Aviation Fuel", *National Renewable Energy Laboratory*, Report NREL/TP-5400-78368, February 2021

PURDUE

Hazard & Risk Analysis

- Industrial safety practices
 - Government and • private best practices
 - Appropriate ٠ regulatory documentation
 - Identification of ٠ pain points
- Handling strategy

GREATER ORLANDO

AVIATION AUTHORITY

- **Risk mitigation**
- Creating new standards

- Regulated
- Flammable
- IDLH at 300 ppm •

34

- Corrosive
- Cryogen
- Water soluble
- Theft
 - Drugs
 - **Explosives**

Order of Magnitude Cost for Airport Upgrade

- Develop preliminary installation cost
 - Major equipment
 - System changes and upgrades
- Use in-depth analysis of a single gate to estimate airport-wide cost
- Develop operating cost impacts
 - Compare against other proposed sustainable fuels
 - Use normalizing metrics such as dollars per available seat kilometers

SwRI /\nsys 🛞

Source: Hoelzen, et al., "Hydrogen-powered aviation and its reliance on green hydrogen infrastructure - Review and research gaps", International Journal of Hydrogen Energy Volume 47, Issue 5, 15 January 2022, Pages 3108-3130

Design Laboratory

MAILK

EIN/C

PURDUE

GREATER ORLANDO AVIATION AUTHORITY

Modeling Roadmap to understand this complex System of Systems

Aerospace Systems ATER UCF

 \rightarrow System Models will inform Component Designs, and vice versa

BOEING

PURDUE

Technology Transition & Demonstration

for the Future of Aviation

Technology Transition & Demonstration

Potential Ground Demonstration of selected components on J85 Engines, in partnership with Larsen Motorsports, @ Valkaria Airport. Larsen Motorsports participates in this project through Peer Review Board.

> Technology Maturation of Components

Ground demonstration

Optimization of integrated Systems

> Boeing's Broad Interest in this Project Should Lead to Flight Demonstration Opportunities

Flight

Demonstration

Technology Transition Plans

Thank you for your Attention!

Ammonia as a Liquid for the Future of Aviation

Thank you for your Attention!

Ammonia as a Liquid for the <u>Future of Aviation</u>

Heavier-than-air flying machines are impossible. Lord Kelvin, 1895

It is apparent to me that the possibilities of the aeroplane, ... have been exhausted, and that we must turn elsewhere. Thomas Edison, 1895

Flight by machines heavier than air is unpractical and insignificant, if not utterly impossible.

Simon Newcomb, 1902

