

CSIRO's Metal Membrane Technology (MMT) – *Technical Update*

Ammonia Energy Association, 5th APAC Conference | 16-18 August 2023 | Newcastle, Australia

CSIRO Energy – Dr David S. Wong Fortescue – Dr Michael Dolan

Australia's National Science Agency

Contents

CSIRO – MMT technical update

- Background to the technology and 2018 demonstration
- Scaling up of manufacturing since then
- Preserving H₂ product purity, using latest seal technology
- 40 kg/day scale pilot 2022
- 200 kg/day scale pilot current focus

Fortescue – MMT commercial update

Ammonia as a hydrogen carrier

Building on existing industries and infrastructure

biomass & wastes to hydrogen

methanol, SNG...

CSIRO's Metal Membrane Technology (MMT)

For production and separation of high purity (FCEV-grade) hydrogen (H_2) from gas mixtures with H_2 .

Current focus – H_2 production from cracked ammonia (NH_3) using metal membrane system:

- ~9.5 mm diameter
- 0.25 mm thick
- Up to 1,100 mm long
- Self-supporting (no porous support, minimising cost)

NH₃-to-H₂ System Demonstrations

- **5 kg/day** proof-of-concept scale demonstrated in Brisbane, 2018
- **40 kg/day** pilot scale completed 2022
- 200 kg/day pilot demonstration scale up current focus, UK 2023-24

Vanadium-based membranes for H₂ purification

High pressure + Mixed Gas Stream (NH₃, N₂, H₂)

Feed-side catalyst (Pd)

V or V-alloy core

— Permeate-side catalyst (Pd)

Low pressure + Ultra-Pure H₂ Our design philosophy:

- Minimise materials costs
 (minimise use of palladium)
- Use scalable manufacturing techniques (metal tube extrusion and electroplating)
- Prioritise purity over flux (to meet ISO-14687 for PEM fuel cells)

Example MMT-based NH₃-to-H₂ System

Brisbane 2018 Proof-of-Concept Demonstration

World-first demonstration of FCEV-refuelling using NH_3 -derived H_2 in 2018 2018 proof-of-concept NH₃-cracking and H₂ separation system

Metal membrane assembly

Brisbane 2018 Proof-of-Concept Demonstration

SCIENCE AND INDUSTRY ENDOWMENT FUND

Supported by BOC, Toyota, Hyundai

Hydrogen purity analysis

H₂ purity for FCEV use specified by ISO 14687-02

Trailer-mounted SYFT Voice 200 Secondary Ion Flow Tube Mass Spectrometer (SIFT-MS)

- Calibrated against 4.7ppmv certified NH₃-in-H₂ mixture supplied by BOC, diluted on-demand with UHP-H₂
- Detection limit << 10 ppbv
- SIFT-MS not suitable for online field applications: FTIR is best option

Technology Updates since 2018

Scaling up the manufacturing – form factor, quantity and quality

- A. 2012-13 planar membranes, 20c sized coin
- B. 2013-17 100mm tubular membranes
- *C.* 2017-18 350-500mm tubular membranes
- *D.* 2019-current 1100mm tubular membranes, with greater scale and quality control

'Bespoke' manufacturing

Automated manufacturing

Quality control

- Automation providing greater reproducibility, repeatability and quality control
- Monitoring of performance (e.g. H₂ permeability) over production batches

Membrane performance (H_2 permeability) vs. membrane no.

Membrane # from production plant, over time

Advances in robustness

- Previous compression seals a challenge
- Latest seal technology (patents pending) provide additional robustness to the technology – importantly, preserving H₂ purity over cycles of operation

Advances in robustness

Seal integrity maintained – vacuum pressure held on membrane permeate side – after multiple cycles of H₂ operations, including shutdown + cooling to ambient.

Multiple cycles of H₂ operations on lab-scale system, with latest seals (patent pending)

Supply chain

An important factor for all new technologies

https://www.kitco.com/charts/livepalladium.html

40 kg/day pilot trial

- Consortium with CSIRO, FFI and partners
- Successful trial in 2022 with 40kg/day pilot ammonia cracker + MMT purification module
- H₂ produced with no N₂ / NH₃ leaks (per GC / FTIR analysis)

Siemens Energy pilot – 200 kg/day

- Siemens Energy led consortium including Geopura, Fortescue and CSIRO
- Ammonia cracker system prototype, designed to produce fuel-cell grade H₂ from green NH₃ via MMT purification module
- Testing two 100 kg/day modules
- Commissioning end-2023 / early-2024

Safety Share – Nitriding by high temperature NH₃

SEM imagery at failure

What happened?

- In 2022, minor NH₃ leak (ppm levels) in a ventilated ammonia-to-hydrogen pilot system.
 Triggered gas detection systems and safe shutdown of the plant. No exposures/injuries.
- SS316 tube failed due to severe nitriding attack after 2000 hours operation, under high temperature (>450°C) and ammonia partial pressures (pure NH₃, 10 bar_g)

What we learnt?

- Carbon steel and stainless steels highly susceptible to nitride attack > 300°C, and particularly with NH₃ gas concentrations >30%, worsened through thermal cycles.
- Nitriding can cause embrittlement and tube failure if severe enough. Rate of nitriding here was ~2-3 mm/year, higher than expected in literature (likely due to thermal cycling).
- Ammonia industry manages this with appropriate metallurgy / materials selection, plant design, condition monitoring + risk based inspection, and can achieve >20y service lifetimes.

Recommendations – particularly to R&D community in the ammonia space:

- Avoid nitriding conditions in plant design, and avoid thermal cycling / shock
- In severe nitriding conditions (>30% NH₃, T >300°C), use >50% Ni (e.g. Alloy600) or Ni-Co alloys
- Best practice engage industry practitioners (ammonia industry) on materials selection
- Perform regular inspections of areas at risk of nitriding

Towards commercialisation

- Fortescue is the commercialisation partner and exclusive licensee of CSIRO's Metal Membrane Technology (MMT).
- Next scale up at 200 kg/day pilot demonstration
- Whilst focus is on FCEV-grade H₂ from cracked ammonia, MMT can be used for H₂ separation from other mixed gas feeds (*noting limitations with specific impurities)

Thank you

CSIRO Energy Dr David S. Wong Team Leader & Project Manager Energy Technologies

David.Wong@csiro.au csiro.au/energy

Australia's National Science Agency