PLASMALEAP Technologies

ZERO-EMISSIONS eFUELS & CHEMICALS

CONFIDENTIAL

Build a sustainable world using green electrons.

OUR INNOVATION PLASMA BUBBLES

TECHNOLOGY

Our reactors discharge at high-voltages to excite air and other gasses into plasma, and react this with water under atmospheric conditions

Image: PlasmaLeap Bubble Column Reactors

Scalable

- Based on principles of fluid dynamics, the technology maintains performance and energy efficiency at scale.
- Operates at atmospheric conditions (temp &
 - pressure) Vertically & Horizontally
 - scalable

Compatible

- High-energy electron approach to chemistry allows many applications via new reaction pathways
- Compatible with wide range of catalysts & electrochem systems

Efficient

- Highly energy efficient for Ammonia synthesis
- Surpasses energy performance in other plasma-systems
- Out-performs energy efficiency frontiers of competing market technologies.

PRODUCTS

PlasmaLeap has scaled its plasma reactor technology into world-leading products and industrial prototypes for zero-emission eFuels & chemicals synthesis

	Leap100 Laboratory-grade reactor	Ammonia Synthesis Ammonia Modular Base Unit	eFuel Synthesis Hydrocarbon Modular Base Unit	
PRODUCT				
APPLICATION	Multiple Applications	Direct fuel, hydrogen carrier, Fertiliser	Carbon neutral fuel for aviation & auto, feedstock for industrial manufacturing	
INPUTS	Gasses + Liquids	Air + Water + Electricity	CO ₂ + Water + Electricity	
OUTPUTS	Multiple synthesis pathwaysMultiple destruction pathways	NitratesAmmonia	 Methanol Syngas Fischer-Tropsch products 	
REVENUE MODEL	Unit Sales	\$/kg	\$/kg	
TECHNOLOGY READINESS LEVEL	9 (In Market)	7 (In Pilot)	4 (In Lab)	

HISTORY

Birkeland–Eyde (1903): used electrical arcs (thermal plasma) to react atmospheric nitrogen (N_2) with oxygen (O_2), ultimately producing nitric acid (HNO₃) with water.

RJUKAN FAB. ANL. I. GOG. OVNSHUS,

HABER-BOSCH GREY AMMONIA

PLASIVIALEA Technologies

IN THE NEWS

MARKET LEADING PERFORMANCE

We are on track to combining world leading energy efficiency & production rates

Graph: Zero-emission Direct Ammonia Synthesis Performance, Source: PlasmaLeap

PLASMALEAP GREEN AMMONIA

We're leading the race in the development of viable solutions for green ammonia

	MARKET TECHNOLOGY				
	Haber-Bosch	Green Haber- Bosch	eNRR	Li intermediary	PLASMALEAP
Temperature and Pressure	150 – 250atm 400 – 500 °C	150 – 250atm 400 – 500 °C	Ambient	180°C	Ambient
Feed requirements	Pure Nitrogen Pure Hydrogen	Nitrogen water	Pure Nitrogen	Pure Nitrogen Pure Hydrogen	Air Water
Moisture sensitivity	Low	Low	High	Low	Low
Stability	High	High	High	Low (<1h)	High
Compatibility with Renewables	Low	Moderate	High	High	High
CAPEX	High	High	Low	Moderate	Low
OPEX	Low	Moderate	Moderate	Moderate	Low

NITRATE & AMMONIA MODULAR BASE UNIT

Green.

Synthesises Ammonia and Nitrates from atmospheric air, water, and renewable electricity.

Decentralised. Safe.

Capable of deployment on farm, removing transport and supply chain. Reduces the risk of large-scale combustion or explosion.

Competitive. Cost-Effective.

Market leading NH3 production and energy consumption rates. 2023 Target 20kWh/kg. No transport and supply-chain costs.

Compatible.

Compatible with variable renewable electricity. Deployable with established electrolyser technology. Modular for scale.

Smart & Connected.

Units are monitored, sampled, and controlled remotely by PlasmaLeap's cloud infrastructure for efficiency and safety.

OUR COMMERCIAL ROADMAP

2024 Decentralized Production On-Farm Nitrate Units 100-200t p.a.

2025 Semi-centralized Production Regional Ammonia Hubs 1-5 Kt p.a. **2027 Centralized Production** Large-scale Ammonia Plants

500kt - 1Mt+ p.a.

F PLASMALEAP

 $(\mathbf{1})$

θ

Ð

PLASMALEAP Technologies

DISCLAIMER

The content of these slides, including all information and opinions expressed, is the property of PlasmaLeap Technologies Pty Ltd and is provided as of the date of presentation. This content is subject to change without notice. While PlasmaLeap Technologies Pty Ltd has made efforts to ensure the accuracy and completeness of the content presented, no representations or warranties, either oral or written, express or implied, are provided in relation to the accuracy, reliability, or completeness of the information contained herein. Neither PlasmaLeap Technologies Pty Ltd, its affiliates, officers, employees, nor agents accept any responsibility, obligation, liability, or duty for any action taken or refrained from based on the content of these slides.

Unauthorized use, reproduction, or dissemination of these slides without express written permission from PlasmaLeap Technologies Pty Ltd is strictly prohibited.

Participants are advised not to solely rely on the content of these slides and to seek independent professional advice or consult experts before making decisions based on the information presented.