

Carbon Footprint Methodology

AEA Annual Conference

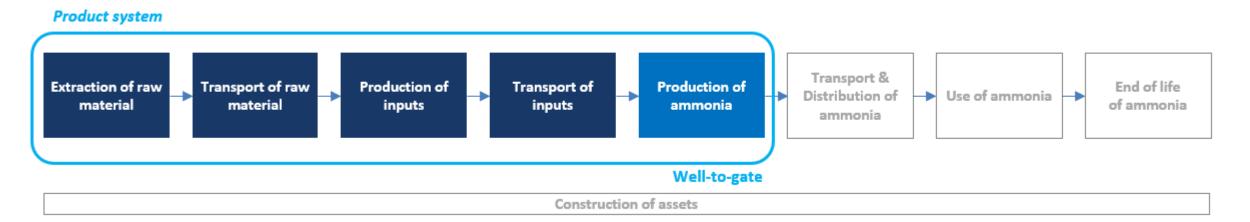
November 13 - 15

Agenda

- Scope and Data Quality
 - Well-to-gate
 - Certification of Inputs
 - Cutoff, defaults, and acceptable certification schemes

Core Energy Inputs

- Emissions calculation formula
- Accounting for emissions with a single core energy input
- Accounting for emissions with multiple core energy inputs
- Hybrid plants
- Batch/co-processing


Scope and Data Quality

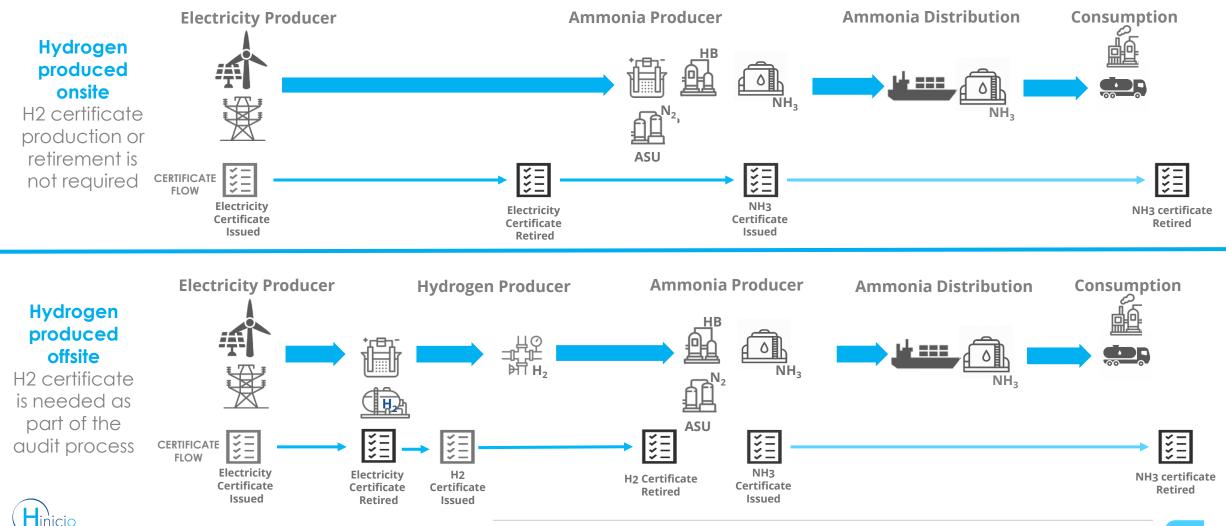
Scope of the AEA CFP Methodology is Well-to-Gate

Emissions from the construction of assets and downstream emissions are excluded

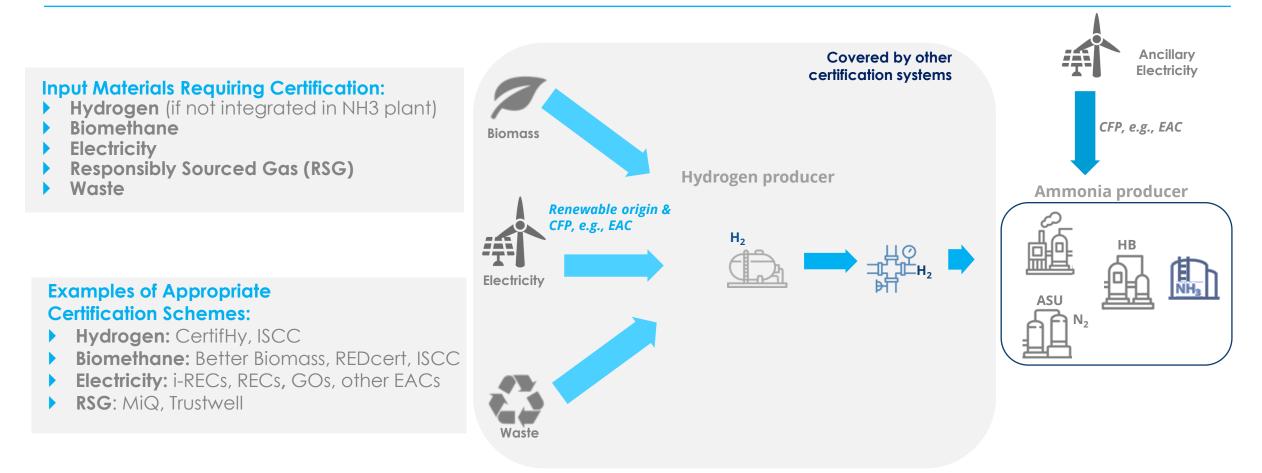
Included emissions in the well-to-gate product system:

- Extraction of raw materials used for ammonia production e.g. fossil fuels
- All production stages needed to produce liquid ammonia at atmospheric pressure of -33C
- This well-to-gate CFP is intended to provide a robust data input to any full life-cycle analysis of ammonia
- Carbon dioxide, methane, and nitrous oxides will be calculated using 100-year time horizon using CO2e factors from the 6th Assessment IPCC report

Excluded emissions in the well-to-gate product system:


- Downstream GHG emissions from subsequent refrigeration, transportation, and use of ammonia
- GHG emissions from the construction of assets in the product system

Ammonia production plants is focus of the audit process


Most items checked by auditors pertain to the activities carried out at the ammonia facility

Example Pathways

Providing Documentation for Certified Inputs

The certification of input materials by other certification schemes is required

INICIC

The ammonia production **cut-off criterion** permits the exclusion of emissions that contribute <<u>2.5%</u> to the total carbon footprint or fall below an absolute threshold of <u>0.02 tCO2eq/tNH3</u>

Addressing Unknowns will Continued to be Developed

Governing committee to build on CFP methodology to address default emission factors

Input Materials Requiring Certification:

- Hydrogen (if not integrated in NH3 plant)
- Biomethane
- Electricity
- Responsibly Sourced Gas (RSG)
- Waste

- Priority is given to applying actual values based on measurements
- Default values can be used when there is minor/or undisclosed carbon footprint

Examples of Appropriate Certification Schemes:

- Hydrogen: CertifHy, ISCC
- **Biomethane:** Better Biomass, REDcert, ISCC
- Electricity: i-RECs, RECs, GOs, other EACs
- **RSG:** MiQ, Trustwell

- Section 8 of the CFP methodology is still being updated to address appropriate certification schemes
- The governing committee will decide upon these aspect of the AEA CFP Methodology

Core Energy Inputs

2

Calculation of a GHG Footprint

Emissions produced from well to supply gate are needed to calculate the CFP

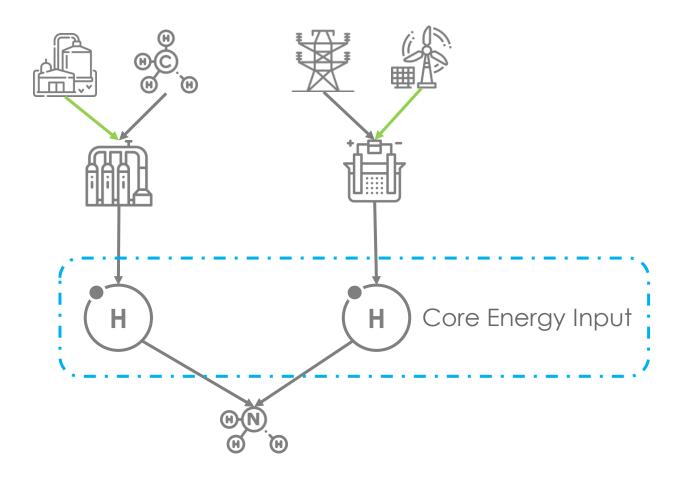
 Carbon footprint formula is simply emissions/tons of ammonia produced

 $CFP = \frac{E}{N}$

CFP	carbon footprint of ammonia († CO _{2eq} /†)
E	net lifecycle GHG emissions for quantity of ammonia produced in assessed time period (t CO _{2eq})
Ν	quantity of ammonia produced in assessed time period (†)

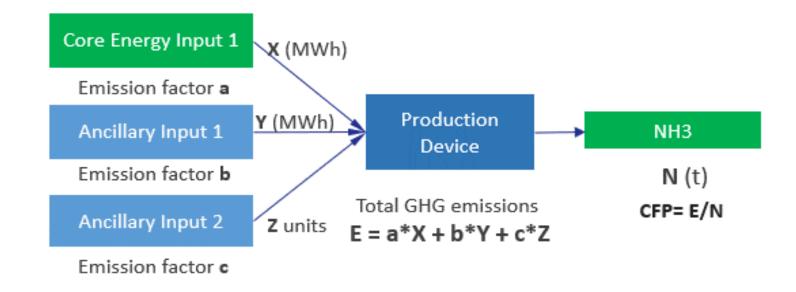
 Lifecycle emissions summing the emissions produced throughout supply chain within the product system boundary.

$$E = e_{input} + e_{process} - e_{removal}$$


e _{input}	GHG emissions from the supply of inputs, i.e., well-to-supply-gate emissions <i>related</i> to the inputs (t CO _{2eq})
e _{process}	GHG emissions from the production of ammonia using the inputs without considering removals such as CCS (t CO _{2eq})
e _{removal}	Net GHG emissions savings from carbon removals such as CCS († CO _{2eq})

Core Energy Input

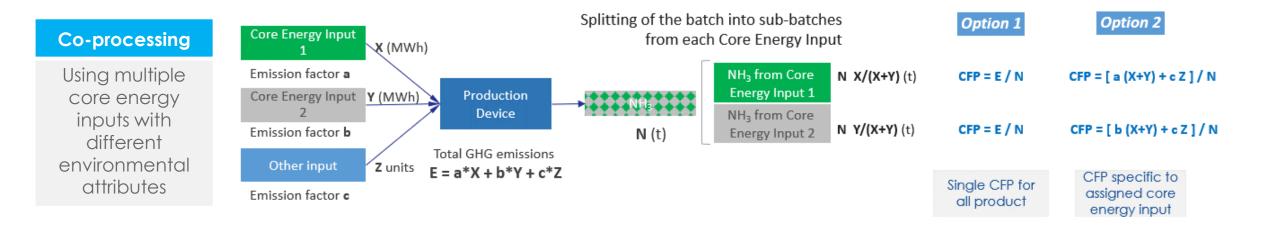
For ammonia production, hydrogen is the only core energy input


- Enables the co-production of ammonia with different environmental attributes because the co-processing hydrogen has different environmental attributes.
- An energy input that contributes to the energy content of the process output (in this case, ammonia), as reflected by its lower heating value.
- The notion of core energy input similarly applies to processes upstream of ammonia synthesis, such as hydrogen production
- In the case of ammonia synthesis, hydrogen is the only core energy input

Adapted from EU RED approach

Accounting for Emissions With a Single Core Energy Input

Emissions assigned to a share of ammonia are the emissions tied to the core energy input



If ammonia is produced without generating any by-products, such as steam, and if the hydrogen used in the production process comes from a single core energy source, then the method illustrated can be employed to determine the ammonia's carbon footprint.

Accounting for Emissions With Two Core Energy Inputs

A hybrid plant can produce two batches of ammonia with different CFPs

Option 1

• Single carbon footprint can be calculated for the entire batch

Option 2

- Assign different CFPs to sub-batches specific to each core energy source each sub-batch is assigned a distinct CFP.
- Each sub-batch is constituted by a share of output equal to the proportion of the corresponding core energy input in total core energy input.

Accounting for Emissions With Two Core Energy Inputs

Example with simplified numbers

Input Data Points			Core Energy Input		Splitting of the batc from each	n into sub-batches Core Energy Input	Option 1	Option 2
Tons of H2 required/ton NH3		0.2	1 X (MWh) Emission factor a Core Energy Input Y (MWh)	Production		NH₃ from Core N₁ X/(X+Y) (t) Energy Input 1	CFP = E / N	CFP = [a (X+Y) + c Z] / N
Electricity required/ton NH3		0.04	2 Emission factor b	Device	→ ••••• Nhi ••••• N (t)	NH₃ from Core Energy Input 2 N, Y/(X+Y) (t)	CFP = E / N	CFP = [b (X+Y) + c Z] / N
Tons of ammonia produced (N)		1		Total GHG emissions = = a*X + b*Y + c*Z			Single CFP for all product	CFP specific to assigned core energy input
		Proportion of	NH3 Quantity o (tons)		ssion Factor H t co2 / t H2)	2 Quantity of Electricity (MW	b) Ele	ion Factor ctricity eq / MWh)
2 /	Core Energy Input 1 (Renewable)	20%	0.04 (a)	0 (X)			
Calculations	Core Energy Input 2 (Conventional)	80%	0.16 (b)	10 (Y)			
	Electricity Input	1				0.04 (c)	C).4 (Z)
	Option 1			Option 2				
Results	1.62 tCO2/tNH3		Core Energy Ir		put 1	0.08 tCO2/tNH3 (p	er 0.2 tons)	
Hinicio			Со	re Energy In	put 2	2.52 tCO2/tNH3 (p	er 0.8 tons)	

