Hinicio Carbon Footprint Methodology

AEA Annual Conference

November 13 - 15

BRUSELAS • PARÍS • ROTTERDAM • WASHINGTON D.C. • SANTIAGO • BOGOTÁ

Agenda

- CCUS & Emissions Reductions
 - Definitions
 - Straightforward Approach
 - Dynamic Plant Splitting Approach
 - Variable CCS & Urea
- Handling Multifunctionality & Allocation Principles
 - Steam
 - Solid Carbon (Methane Pyrolysis)

CCUS Definitions & Emissions Reduction

Carbon Capture & Storage Definition

The AEA scheme allows for emissions reductions with long-term CCS

Carbon Capture & Storage

Captured CO₂ is CO₂ that is extracted from the process and then available for conditioning and storage

▶ After capture, CO₂ can be transported via pipeline to underground geological storage sites

It is assumed that the assured geological storage period to be considered long-term will be 100 years¹, although this will be subject to local regulatory requirements applicable to the participant

▶ Permanently storing CO₂ resulting from ammonia production reduces the CFP of ammonia

1 IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp. P. 197

Carbon Capture & Utilization Definition

The AEA scheme allows for emissions reductions with only long-term CCU

Carbon Capture & Utilization

Once carbon is captured, it can be subsequently utilized in various commercial products

Long-term (30+ years).

Long-Term CCU Explained

- Long-term CCU: Permanent or semipermanent sequestration of CO₂.
- Example: Transformation of CO₂ into a mineral carbonate
- Eligible for emissions reduction due to long-term CO₂ storage.

Short-term (<30 years)

Short-Term CCU Explained

- Short-term CCU: Temporary storage of CO₂ in products with a lifespan of less than 30 years.
- Example: Urea for fertilizer CO₂ released when applied to fields.
- No emissions reduction due to temporary carbon sequestration.

Straightforward & Dynamic Plant Splitting Approach Two approaches to calculate the emissions reduction from CCS

Straightforward LCA Approach

CCS reduces the footprint of all the ammonia produced

Dynamic Plant Splitting Approach

CCS reduces only part of the ammonia produced, and the rest keeps the regular footprint

Conditions for Applying DPS:

 Ammonia production plants that apply CCS which has fluctuating CO₂ sequestration rates over time.

Accounting for CCS in case of multiple products

When coproducing urea, there are at least two ways to assign the emissions reduction

The examples below assume that all the CO2 not used in urea, is geologically stored.

Straightforward LCA

Dynamic Plant Splitting

The total CFP of both products decrease in proportion to the amount of avoided CO_2 emissions due to CCS.

However, with dynamic plant splitting, an amount of low-carbon NH3 is produced in proportion to the amount of avoided CO2 emissions due to CCS.

Handling Multifunctionality & Allocation Principles

2

Emissions From Steam Used to Produce Renewable NH₃

Steam exported from conventional SMR used to compress H₂ and N₂ for renewable NH₃

Assigning a CFP to Co-Produced Steam

linicio

Different variants of energy-based allocation methods can be applied

Emissions Allocated to Net Steam Consumption								
1) Energy losses fully assigned to main reformer products (hydrogen)	2) Steam also carries emissions related to process energy losses	3) System expansion considering that the steam replaces steam from a boiler						
Steam is only assigned the emissions of heat input required to generate the steam in a heat exchanger, considering 98% efficiency	Steam is allocated the upstream and process emissions in proportion to its energy content (steam energy content vs hydrogen energy content)	Steam is allocated the emissions of heat input required to generate the steam in a natural gas fired boiler, considering 90% efficiency						

Steam CFP Varies Slightly By Approach Used ... and the ammonia CFP also varies slightly

Example shows small variations in steam CFP when applying the three different options of allocation methods.

	Option 1 Option 2		Option 3	
Description of Approach	Steam is only assigned the emissions of heat input required to generate the steam in a heat exchanger, considering 98% efficiency	Steam is allocated the upstream and process emissions in proportion to its energy content	Steam is allocated the emissions of heat input required to generate the steam in a natural gas fired boiler, considering 90% efficiency	
Steam CFP in g CO ₂ e/MJ	67.2 (fixed value)	73.5 (process dependent)	73.2 (fixed value)	
Renewable Ammonia in kg CO ₂ e/kg	0.356	0.372	0.371	

Allocating Emissions using Methane Pyrolysis for $H_2 \& NH_3$ Ammonia CFP depends emissions allocation to the Carbon and H_2

S. Timmerberg, et.al.: Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas-GHG emissions and cost, Energy Conversion and Management, 2020.

Allocation Methods Assessed

...following allocation method hierarchy specified by ISO 14067

	Application subject to various conditions System expansion by substitution	Physical causality based allocation	Energy based allocation A	Variant Energy based allocation B	Mass based allocation	Value based allocation	No allocation – carbon is stored
DESCRIPTION	Emissions assigned to hydrogen based on emissions of reference hydrogen production	Impact on pyrolysis process emissions of making H_2 available for use assigned to the H_2	Emissions assigned to co-products based on their respective energy content	Emissions assigned to co-products based on their respective energy content, with adjustment for carbon content	Emissions assigned to co-products based on their respective mass Mass of the products	Emissions assigned to co-products based on their respective economic value	The process yields only one product: hydrogen, therefore allocation is not needed
KAIIONALE	Which reference production would H2 from NG pyrolysis substitute? → Not considered applicable here	Emissions assigned based on the change of emissions caused by making an extra unit of co-product available (keeping other co-product quantities constant)	Energy content of the products is made up by the energy content of the inputs Always assigns the same process emissions per MJ to all the co-products	Considers difference in emissions from separate production	is made up by the mass of the inputs Not suitable for steam Generally, not considered suitable for H_2 due to its low molecular weight	Value is a fundamental basis for splitting the emissions between the products	When hydrogen production by pyrolysis will yield mor carbon than needed by the applications, the carbon will need to be permanently stored

Impact of Allocation Methods on CFP of Hydrogen Significantly varying results for different methods of allocation

