ceres

AEA Annual Conference Robust Business Case Leveraging Ceres Low Temperature SOEC Technology 15 November 2023

Ceres Power Ltd ©2023. All Rights Reserved.

ceres

- Leading Solid Oxide Cell technology for power generation and electrolysis refined for over 20 years
- Horsham, UK headquartered
- Spun out of Imperial College London in 2001
- ✤ ~650 employees
- Listed on London Stock Exchange FTSE 250
- Unique IP ~100 patent families
- Focusing on licensing business model
- We collaborate with world-leading companies to deliver clean energy technology...
 - ...at scale and pace

2

Ceres Power Ltd O 2023. All Rights Reserved.

Highly differentiated Solid Oxide Technology

Ceres low temperature solid oxide cell

- Highly efficient
- Fuel flexible
- Steel backbone, robust and scalable
- Made from widely available materials
- Manufacturable at scale and quality
- Cost-efficient

3

ceres

Ceres Power Ltd ©2023. All Rights Reserved.

- Suitable for a wide range of applications
- Operates in either fuel cell or electrolysis mode

ceres

hvdrogen

Low-cost ceramics

Bosch + Doosan: 250MW SOFC Manufacturing Capacity in 2024-2025

MW-class SOEC system installed at test site in Germany

SOEC coupled with industrial processes able to supply waste heat

6

- Water splitting into H2 and O2 requires energy, which can be in the form of either electricity or in the form of heat.
- Low-temperature electrolyzers like AWE (Alkaline Water Electrolysis) and PEM (Proton Exchange Membrane) use energy in the form of electricity only and require cooling to maintain the operating temperature.
- SOEC technology uses a part of the energy in the form of electricity and the other part in the form of heat (e.g., for phase shift from water to steam, which is about 66% of heat energy that could be used).
- The high operating temperature of SOEC creates two main advantages compared to low temperature electrolysis technologies: thermodynamic efficiency and faster kinetics. This gives higher energy efficiency (less kWh/kg H2 produced) even when SOEC starts from water (i.e., use electricity instead of waste heat for phase shift from water to steam).

SOEC coupled with HB (Haber-Bosh) Ammonia

- HB Ammonia synthesis is exothermic, theoretically could provide more than 75% of the heat required for Ceres SOEC electrolysis reaction.
- The waste heat from HB Ammonia synthesis can be utilised to generate steam required for the SOEC.
- Alkaline or PEM electrolyzer integrated with Haber Bosch has a specific electricity consumption of 9.5-13.6 kWh/kgNH3
- SOEC electrolyzer integrated with Haber Bosch has a specific electricity consumption of 6.5-7.5 kWh/kg NH3.

SOEC technology platform provides the most efficient electrolysis route to hydrogen and Ceres is the most efficient among SOEC technologies, running at lower temperature.

Ceres SOEC efficiency advantage offers lower CAPEX, OPEX and LCOA

Illustration for 130kT/year green Ammonia production (23KT/year H2 production)

ceres

Ceres Power Ltd ©2023. All Rights Reserved.

8

THANK YOU

Steven Weber Business Development Director – North America steven.weber@cerespower.com

+44 (0)1403 273463 info@cerespower.com Ceres Power, Viking House, Foundry Lane Horsham, RH13 5PX UK

Ceres Power Ltd ©2023. All Rights Reserved