Ammonia-fueled ship designs of tomorrow

Case study: Nordic Green Ammonia Powered Ships (NoGAPS)

Thomas McKenney, Ph.D.

Associate Professor of Engineering Practice University of Michigan

Ammonia Energy Association Annual Conference

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Introducing M/S NoGAPS

Powered by Ammonia

Design Objectives

BREEZE

- Confirm no major technical or regulatory obstacles are present to putting a vessel on the water
- Demonstrate a credible business model through meaningful risk and cost reductions

Design Requirements

- 22,000 m³ gas carrier
- Semi-refrigerated cargo tanks (5.3 bar)
- Multi-gas, but main intended cargo commodity is ammonia

NoGAPS

Page 2

- Semi-refrigerated fuel tanks, 8 bar, -33.2C
- Intended route: Gulf of Mexico to Northern Europe (range on ammonia 12,000 nm)

Preliminary safety concept

Key considerations: risk, cost, emissions

HAZID results

Top Risks

- Fuel tanks: Loss of primary containment due to fire (2.4), explosion (2.5), impact or dropped object (2.6), connection failure
- Fuel handling room: leakage in valves/flanges
 (3.1), pipe rupture (3.2), heater/cooler leakage
 (3.3), trapped liquid (3.9)
- Rupture of high-pressure fuel piping on deck (6.1)
- Pipe rupture in engine room (4.1)

Projects should take advantage of new tools (QRA + gas dispersion)

Further investigations needed to inform regulatory development

Ammonia releases/emissions

- Automated accommodation ventilation design with gas detection
- Water catcher/chemical absorber in fuel supply system and resulting ammonia water solution
- Ammonia slip from engines

Energy Efficiency

 Fuel cells, batteries, wind assisted propulsion, hullform optimization, ...

Fuel Handling Room

- Automated ventilation design
- Fire fighting equipment
- Minimize crew time in fuel handling room

Emission Reduction

- NO_X and N_2O
- Pilot fuel: minimize amount and prepare for biofuel

Key considerations and lessons learned

- Gas carrier segment best to introduce ammonia as a fuel (with IGC Code update)
 - Ammonia-fueled gas carriers can also be designed as bunker vessels
- Early engagement with classification society and flag state critical
- Optimize the vessel's energy efficiency
- Take advantage of new tools to inform design decisions including QRA and gas dispersion
- Risk, cost and emissions were main drivers of design decisions
 - Main engine is only ammonia consumer with auxiliary engines using conventional/biofuels
 - Reduced number of fuel storage tanks
- We don't know everything yet
 - Close monitoring of the development and testing of ammonia dual-fuel engines and auxiliary technologies needed
- Follow-up and further develop risk mitigation measures identified in HAZID reviews

Thank you!

Let's stay in touch

Visit our website www.zerocarbonshipping.com and make sure to follow us on LinkedIn to stay up to date with the latest news and events.

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

NoGAPS 2 Partners

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping **BW** Epic Kosan

(MAN) MAN Energy Solutions Future in the making **V**ÄRTSILÄ

Innovation

Nordic

Ship designer

BREEZE

Flag state representative

DANISH MARITIME AUTHORITY

Critical challenges to onboard safety and operations

Developing integrated ship designs

From concept to reality

- The NoGAPS journey started by agreeing on a shared overall concept and identifying key issues to be addressed when developing specific solutions
- NoGAPS 2 sees some narrowing of focus toward the vessel and its design, operation, and economics, but a broader interaction with the ecosystem was still important to build support for the model and exchange knowledge
- NoGAPS 3 is now narrowing in on commercialization with a small group including ship owner, charterer and shipyards focused on constructing and delivering a vessel that will operate using ammonia as a fuel

Arrangement and main characteristics

MAIN DIMENSIONS

Length over all	160.00 m
Length PP	157.60 m
Breadth moulded	26.00 m
Depth, moulded	14.70 m
Design draft, moulded	9.28 m
Scantling draft, moulded	9.50 m
Deadweight, des. draught	18.400 t
Deadweight, max. draught	19.820 t

SPEED & ENDURANCE

Max. speed

Endurance (service speed)... 12.000 nm

CAPACITIES (100%)

Cargo tanks	22.200 m ³
MGO	929 m³
BW	10.063 m ^a
FW	452 m³

CARGO EQUIPMENT

Segregations 2 (3 cargo tanks) Cargo pumps (submerged) 6 x 400 m3/h Cargo pumps type Deep-well, electric Discharge rate (6 simult.)......2 400 m³/h

NH₃ FUEL TANKS

....16.7 kn

NH3) m ³
Pressure	 barg

FUEL CONSUMPTION

(Service speed, design draft, 15% SM, no PTO engaged)

Fuel consumption, NH3 48.8 t/d Fuel consumption, MGO (pilot) .. 1.87 t/d

ACCOMMODATION

• 27 + 6 Suez Crew all in single cabins

PROPULSION / MACHINERY

- 2-stroke 6G50ME-C9.6-Ammonia HL main engine
- 1 x 7,200 kW at 93.0 r/min
- 4 stroke Wärtsilä Generating sets 3 x 1,255 kWe 6L20
- Shaft generator (PTO) 1,000 kWe
- 1 CP Propeller, dia. 5.8 m
- 1 x Emergency diesel generator 129kW
- 1 x Bow thruster 1500 kW
- 1 x Ballast water treatment system 1000m3/h

CLASSIFICATION

type 2G(-48C, 700kg/m3, 5.3bar) GF NH3, Clean design, E0, NAUT(OC), BNOM, BIS, TNOM, BWM (T), Recyclable, DNV Ice Class 1A

Regulatory approach

IGC Code and DNV Rules as a basis

- Ch.16 of the IGC Code covers cargo as fuel
- IGC Code is mainly written for methane (LNG) cargo as fuel, but §16.9 in the IGC Code allows for alternative fuel products
- Unlike IGF Code, IGC Code prohibits toxic products as fuel
- DNV Rules for Liquified Gas Carriers can accept use of ammonia subject to agreement with flag administration

Equivalent safety as methane (LNG) cargo as a fuel

- NoGAPS project and planned AIP is only a high-level review of relevant early design documentation
- A hazard-based on ALARP principle is found to be appropriate level to document similar safety for NH3 as fuel compared to Methane (LNG)
- When potential vessel is made, then full compliance with rules must be done

HAZID methodology

- HAZID is a structured team-based review technique to identify hazards associated with a particular concept, design, operation or activity
- HAZID is one of the most effective approaches to identify major accident hazards with the expertise and knowledge of a competent and experienced workshop team represented by people from design, construction and operation

HAZID results and top risks

		1	2	3	4	5
		None	Minor	Significant	Severe	Catastrophic
Frequency						
5	Frequently					
	M					
4	very likely					
3	Likely					
		1.3. 1.6. 3.8	1.2	1.4. 3.1. 3.3	6.1	
		1.0, 1.0, 0.0			012	
2	Unlikely					
			1.1, 1.5, 2.1, 2.3,	2.2, 3.10, 6.	3.2, 3.9	2.6, 4.1
			3.5, 3.6			
1	Extremely					
	remote					24.25
						2.1, 2.3

Severity

Top Risks

- Fuel tanks: Loss of primary containment due to fire (2.4), explosion (2.5), impact or dropped object (2.6), connection failure
- Fuel handling room: leakage in valves/flanges (3.1), pipe rupture (3.2), heater/cooler leakage (3.3), trapped liquid (3.9)
- Rupture of high-pressure fuel piping on deck (6.1)
- Pipe rupture in engine room (4.1)

Preliminary safety concept

Gas dispersion scenarios and analysis

Classification	10 min	30 min	1 h	4 h	8 h	End Point (Reference)
AEGL-1	30 ppm	30	30 ppm	30 ppm	30 ppm	Mild irritation
(nondisabling)	(21	ppm	(21	(21	(21	(MacEwen et al., 1970)
	mg/m ³)	(21	mg/m ³)	mg/m ³)	mg/m ³)	
		mg/m ³)				
AEGL-2	220 ppm	220	160 ppm	110	110	Irritation: eyes and
(disabling)	(154	ppm	(112	ppm	ppm	throat; urge to cough
	mg/m ³)	(154	mg/m ³)	(77	(77	(Verberk, 1977)
		mg/m ³)		mg/m ³)	mg/m ³)	
AEGL-3	2,700	1,600	1,100	550	390	Lethality
(lethal)	ppm	ppm	ppm	ppm	ppm	(Kapeghian et al., 1982;
	(1,888)	(1, 119)	(769	(385	(273	MacEwen & Vernot,
	mg/m ³)	1972)				

Scenarios

Vent mast

Results

Fuel preparation room ventilation outlet

Pipe flange on deck

Engine exhaust

Findings

- 30ppm gas cloud will cover accommodation
- 2,700ppm gas cloud avoids accommodation and deck level
- Slightly changing vessel direction can reduce risk
- 30ppm gas cloud will cover accommodation
- 2,700ppm gas cloud closer to deck area and accommodation
- Assumed leakage rate impacts final hazardous zones
- Highest risk identified from the analysis; risk mitigation measures needed
- 2,700ppm gas cloud covers deck area
- Ammonia slip in engine exhaust is quickly diluted to sufficiently safe levels (<5ppm)
- Same applies for 10ppm and 30ppm cases, which can inform current Class guideline updates and regulation development

AGEL Table: Danasa, A & Soesilo, Tri & Martono, Dwi & Sodri, A & Hadi, A & Chandrasa, Ganesha. (2019). The ammonia release hazard and risk assessment: A case study of urea fertilizer industry in Indonesia. IOP Conference Series: Earth and Environmental Science. 399. 012087. 10.1088/1755-1315/399/1/012087.

Key considerations: risk, cost, emissions

Project deliverables = actionable industry guidance

