

How to give a chemical push to ammonia in a compression ignition engine?

17/10/2024

Corporate Presentation

This document and the information therein are the property of Eurenco, They must not be copied or communicated to a third party without the prior written authorization of Eurenco

1

Our expertise in combustion led us to examine the possibilities to help Ammonia in a compressive Ignition

→ the Additives

Move to tests on Research engine with additive in pilot (and ammonia at admission)

- → Additive in pilot makes combustion happens where it would otherwise misfire
- → Additive in pilot improves pressure & Heat release in cylinder
- Additive in pilot improves energetic efficiency during combustion cycle

The additives

- One of our company's expertise is nitration
- Biggest maker of a 2-Ethylhexyl nitrate used to improve Diesel fuels ignition
 - we have technical understanding of mechanisms this type of additives have with HC based fuels

Developed nitrates based products to enhance combustion of emerging renewable fuels:

- Bio-sourced
- Was first targeting MeOH
- Called "CEN" for Combustion Enhancer Nitrate

Have a working partnership with the Prisme Lab in Orléans developing expertise on ammonia engine

We tried the developed product on Ammonia « just to try »

→ Results started this whole project for us

Corporate Presentation

Initial results: Rapid Compression Machine

- Measures ignition delay of a combustible mixture
- Additive is mixed directly to NH₃
- Left: X axis → additive in ppm (weight)
- Right: X axis reverse intake temperature
- Pressure is at 40 bars to have ignition of ammonia w/out additive at any temperature

1. With additive reduction of ignition delay regardless of ignition temperature

2. With additive decrease of ignition temperatures

17/10/2024

Corporate Presentation

- **Gaseous admission of Ammonia through intake**
- Injection of a two types of pilot fuels with or without additives

Low Reactivity Fuel : NH ₃ (+ Air) 98% energetic										
Reactivity Fuel : $C_{12}H_{26}$ or HVO + CEN CEN : 0 – 1 – 10% volume fraction of HRF						2% energetic				
					Blen	nds (vol	%) _{Dod} .	HVO	CEN	
Fuels properties	Ammonia	Dodecane	HVO	CEN	•	D0	100		0	
Chemical Formula	NH ₃	C ₁₂ H ₂₆	~ C ₁₂ H ₂₆	-NO ₃ *		D1	99		1	
Density (g/L) – Std conditions	0.730 _{gas}	750 _{liquid}	785 _{liquid}	~950 _{liquid}	Δ	D10	90		10	
Molar mass (g/mol)	17	170	~ 170			но		100	0	
Cetane number	<5	73			•	H1		99	1	
Lower Heating Value (<i>MJ/kg</i>)	19	45	44	~ 30*	Δ	H10		90	10	

17/10/2024

Corporate Presentation

Fuel/air ratios & IMEP

Corporate Presentation

Misfiring zones: F/A >0,7

Corporate Presentation

Cycles IMEP 4 bar- F/AR 0,7

17/10/2024

Corporate Presentation

Indicated Thermal Efficiency

Corporate Presentation

Emissions: NOx 12 bar IMEP

At high IMEP, no sign of help from the additive on NOx reduction for HVO

At high IMEP, in misfiring areas clear reduction of NOx emission, by having additive in dodecane

Emissions NOx 4 bar IMEP

At Low IMEP, clear help from the additive on NOx reduction for HVO at higher F/A At Low IMEP, slight Increase of NOx with the additive for Dodecane at higher A/F Impossible to directly conclude on impact of additive on NOx emissions

Corporate Presentation

CEN addition in the pilot fuel promotes the inflammation and the combustion (CA₁₀ \rightarrow IDT).

Less than 0,1 mass % of CEN give a significant chemical push to ammonia in a Compression Ignition situation

Corporate Presentation

Engine installation

Parameters	Value
P _{in.} (bar)	Variable
T _{in.} (°C)	80
P _{inj.} (bar)	200
DOI (µs)	Fct of $\frac{e_{LRF}}{(e_{LRF} + e_{HRF})} = 0.98$
SOI (CAD)	Copied from previous tests ⁴

Engine configuration

Engine (single-cylinder)	DW10F				
Displaced Volume (cc)	499				
Stroke (mm)	88				
Bore (mm)	85				
Compression Ratio	16.4 : 1				
Number of Valves	4				
Speed (rpm)	1500				
Number of nozzle holes (Injector)	7				

Injection and intake port parameters (IMEP : 4bar)

17/10/2024

Corporate Presentation

N₂O emissions

Low N₂O emissions, difficult to conclude as the levels are too low for the detection limit

Corporate Presentation

Testing points

