MOGY

Unleashing the NH₃ Kraken: Pioneering Carbon-Free Ammonia Power

Jatinder Sampathkumar

Ammonia Energy Association - November 2024

ABOUT AMOGY

Company **Profile**

Founded: Nov. 2020

Funding to date: \$220M

Headquarters: Brooklyn, NY

Other Locations: Houston, Norway, Singapore, Korea

Our Investors

- Funding raised to date: \$220M
- Seed: \$3M | Mar 2021
- Series A: \$20M | Nov 2021
- Bridge: (uncapped note): \$46M | Jun 2022
- Series B: \$150M | Mar 2023

"The maritime sector accounts for up to 3% of global GHG emissions."

If the maritime industry were its own country, it would be the sixth-largest GHG emitter in the world.

© 2024 AMOGY INC — AMOGY CONFIDENTIAL. —

The Maritime Supply Chain is looking for ways to decarbonize

- WHY AMMONIA

MOGY

Ammonia

Green

– No Carbon

- Abundant and cheap
- 100+ yrs. scaled industrial use

Liquid – High Energy Density

- Material: 10x battery & 4x H₂ 350 bar
- System: > 2x battery & H₂ 350 bar
- Easy to store, deliver and use

Ċ

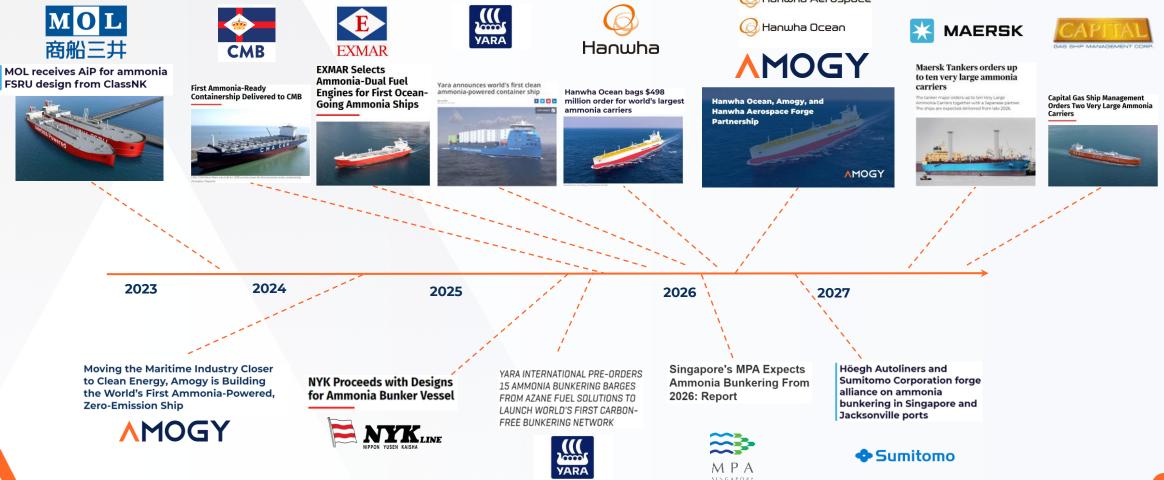
High Power – Scalable Solution

- Miniaturized NH₃ power system
- Efficient conversion to electricity
- Zero GHG emissions

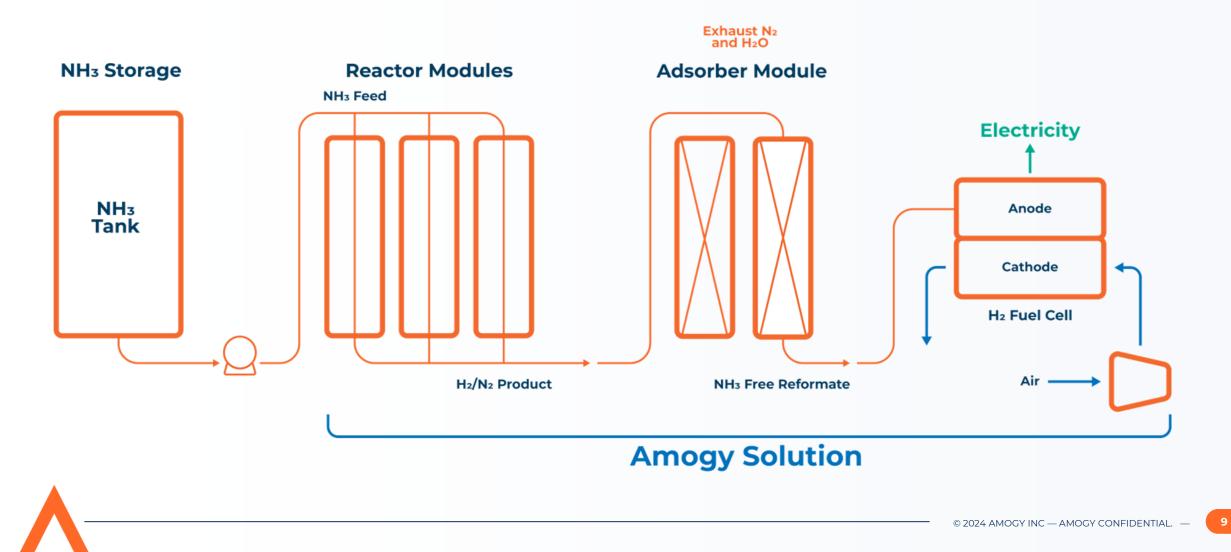
– WHY AMMONIA

Ammonia Infrastructure Today

500 vessels capable of carrying ammonia


100+ years of scaled industrial use, however, no ammonia-to-power technology available yet

7


– WHY AMMONIA

Ammonia Chosen by Major Shipowners

DNV: "Ammonia-fueled ships expected to represent almost 100% of new vessels (by fuel consumption) from 2044 onwards"

Amogy's Ammonia-to-Power Technology

- DEMONSTRATIONS

Amogy's Ammonia-Powered Milestones

						20 Ammonia-to-pov prod	wer commercial ucts	
Drone		Tractor	Class 8 Tru	ck Tu	ugboat	Power		
July 2021		May 2022	Jan. 2023	Se	pt. 2024	Generation	Hydrogen Carrier	
		I.						
\$3M Seed	\$20M Series A	A \$46M E		\$150M Series B or commercialization	Full	Full Commercialization		
(Feb. '21)	(Oct. '21)	(Jun. '	'22)	(Mar. '23)	Commercializ	Commercialization		

– DEMONSTRATIONS

Ammonia Powered Tugboat

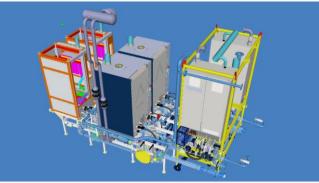
World's first carbon-free, ammonia-powered vessel:

- Stored energy: >5 MW h_e
- Vetted design from regulatory bodies to ensure full safety compliance
- Demo date: September 2024

Watch Demo

Partners:

MOGY


- NH₃ KRAKEN OVERVIEW

NH₃ Kraken Conversion

Tugboat Details

- 1957 ABS Classed Single Screw Icebreaker Tugboat
- First Diesel Electric Power Tug in Norfolk Harbor
- 32 m LOA

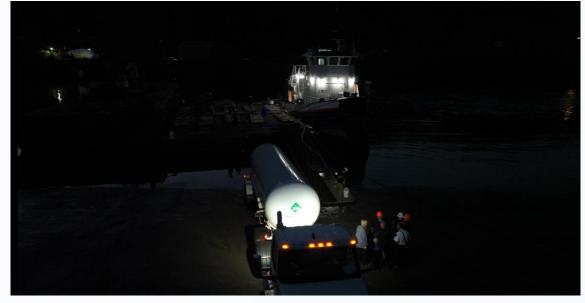
Retrofit and Conversion

- Hybrid Electric Conversion
- Integration of Amogy Technology
- Fuel Preparation System
- Safety (Flammability, Combustibility, Toxicity)

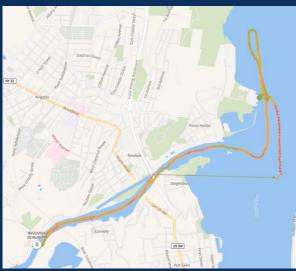
Guidance from Class and Industry Standards

- IMO Standards
 - SOLAS/IGC Code/FFS Code
- Title 46 US Code of Federal Regulations (CFR): Shipping
- Class Requirements on Ammonia Fueled and Hydrogen Fueled Vessels

- BUNKERING AND SAFETY


Ammonia Bunkering

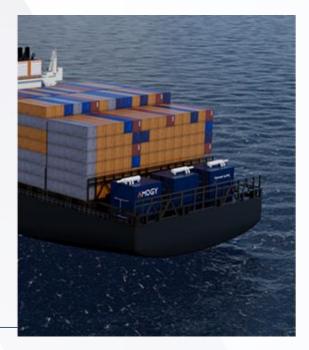
- First ammonia bunkering in USA.
- Collaborated with multiple regulatory bodies
 - USCG provided guidelines on the use of ammonia cargo as fuel a first for this demonstration.
- Safe and Swift bunkering
- Created the regulatory infrastructure enabling future ammonia fueling


13

- COMISSIONING AND OPERATION

Ammonia Sailing

- World's first carbon-free, ammonia-powered vessel
- Vessel dimension: 100 ft
- Sailing location: Hudson River


- OUR PRODUCT

MOGY

Applications

Maritime Shipping

- Ammonia carriers
- Container ships
- Tankers
- General cargo
- Offshore vessels

Hanwha Ocean, Amogy and Hanwha Aerospace Forge Partnership to Decarbonize Maritime Sector with Ammonia as a Zero-Emission Fuel

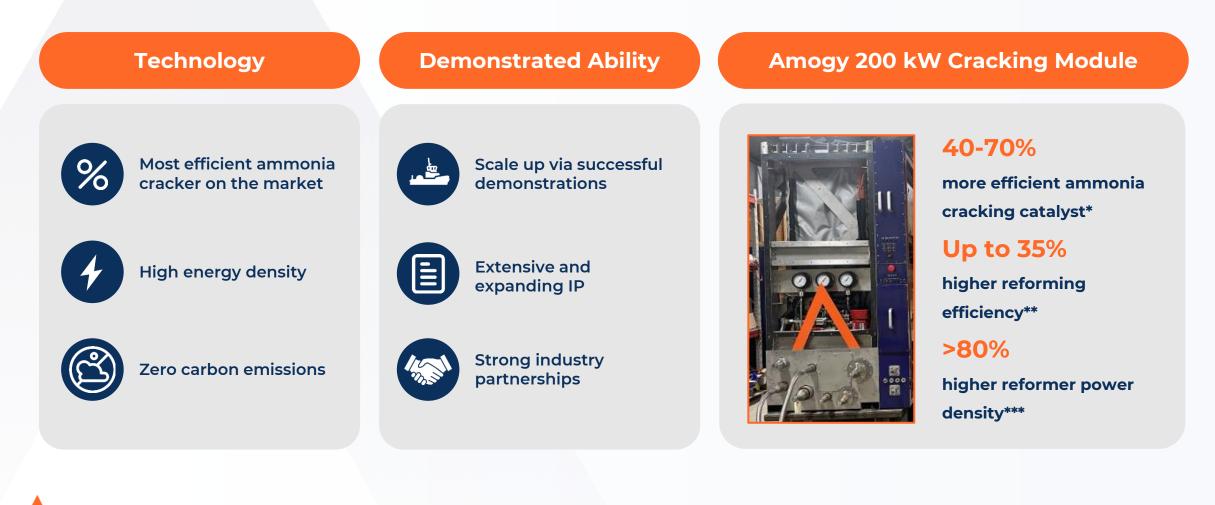
0 🔽 🖬 🔤

Hanwha

Power Generation

- Distributed power generation
- Shore power
- Microgrids
- Utilities

> APRIL 17, 2024


Amogy Receives Order from Terox to Enable Carbon-free Charging on Construction Sites

15

- OUR TECHNOLOGY

MOGY

Most Advanced Ammonia Cracking

*At typical operating temperatures. **Compared to other reforming technologies (SMR, NH3 cracking, photocatalytic reactors); ***Compared to Steam Methane Reforming (SMR) technologies. 16

Thank You

Jatinder Sampathkumar

Senior Systems Engineer

amogy.co

<u>ontact@amogy.co</u>

Additional Reference Slides

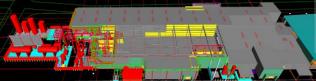
19

- ABOUT AMOGY

Global Footprint

- OUR FACILITIES

Amogy Facilities


Facility overview (NYC, Stord, Houston)

Brooklyn, NY Amogy HQ, R&D lab

Stord, Norway Scale-up test, module test

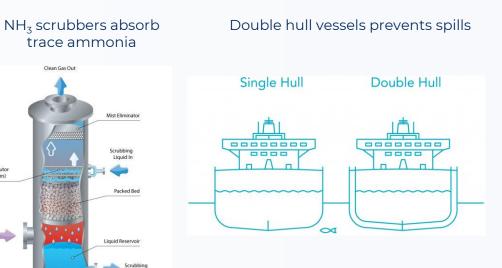
Houston, TX (Opening Q1 2025) Product development, manufacturing

– WHY AMMONIA

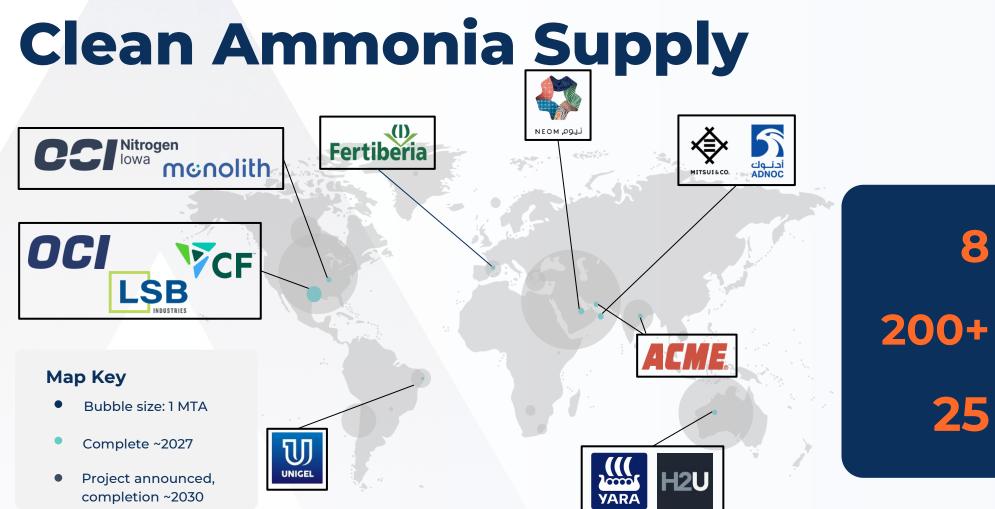
Ammonia Can Be Handled Safely

Safe handling of ammonia is not new

- Second most produced chemical in the world
- 20 MTA actively transported across ~200 shipping ports


Robust safety standards from key organizations

Risk can be mitigated


Odor threshold 5 PPM

Liquid Distributo (Spray Nozzles) OSHA PEL* 50 PPM

PRODUCT VERSATILITY

- Growing number of ~0.5 to 1 MTA blue and <0.1 MTA green NH₃ projects mitigates supply constraints
- Combination of 45Q and 45V incentives de-risks US supply

MTA

MTA

projects FID

announced

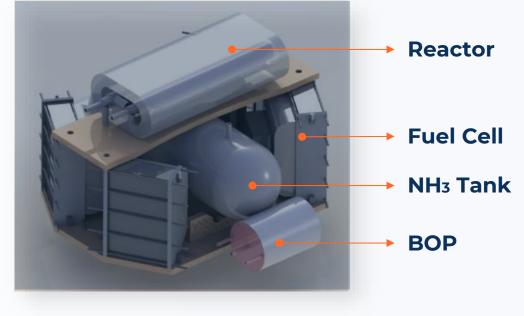
projects by 2027

projects announced

8

Our Demonstrations

- DEMONSTRATIONS


Ammonia Powered Drone

World's first carbon-free, ammonia-powered drone:

- Power: 5 kW
- Ammonia-to-power efficiency: 38%
- Demo date: July 2021

Watch Demo

– DEMONSTRATIONS

Ammonia Powered Tractor

World's first carbon-free, ammonia-powered tractor:

- Power: 100 kW
- Ammonia-to-power efficiency: 40%
- Demo date: May 2022

Watch Demo

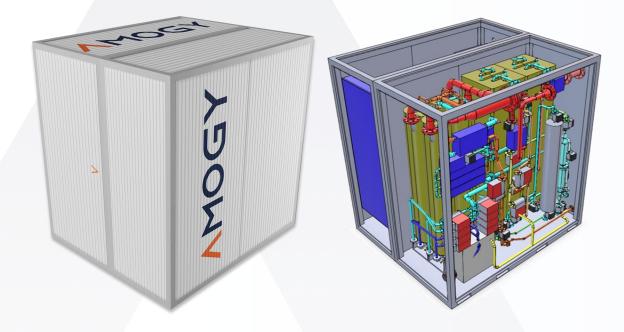
- DEMONSTRATIONS

Ammonia Powered Truck

World's first carbon-free, ammonia-powered class 8 semi-truck:

- Power: 300 kW
- Ammonia-to-power efficiency: 40%
- Demo date: January 2023

Watch Demo

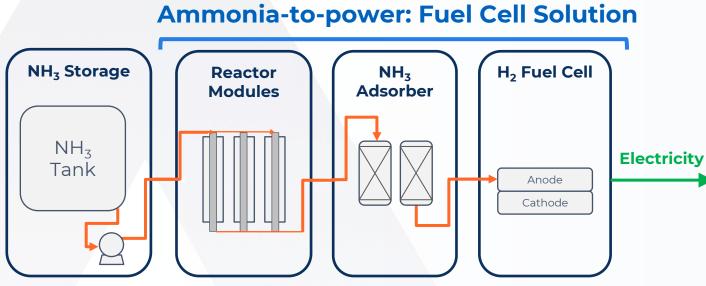

Our Technology

- OUR PRODUCT

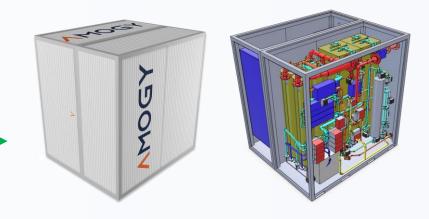
Ammonia-to-Power Solutions

Amogy Reformer + Fuel Cell

- Zero carbon emissions: 100% carbon-free electrical power.
- High efficiency: approx. 40%.
- Modular and scalable: adaptable to various power needs, up to multi-MW.
- Versatile applications: maritime, stationary power, and others.


Amogy Reformer + H₂ Engine

- **Combined heat and power:** generates electricity & high-quality heat.
- Climate resilient: tolerant to high ambient temperatures.
- **Reduced cost:** reduced upfront costs with a small efficiency penalty.
- Well established: using well proven engine technology.


MOGY

– OUR TECHNOLOGY

Amogy's Technology

Fuel Cell Solution

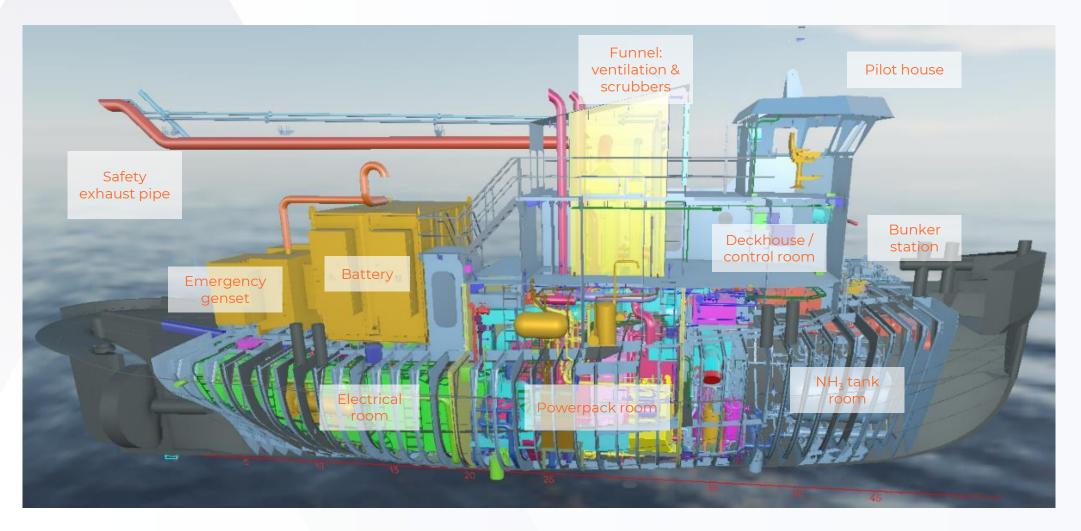
29

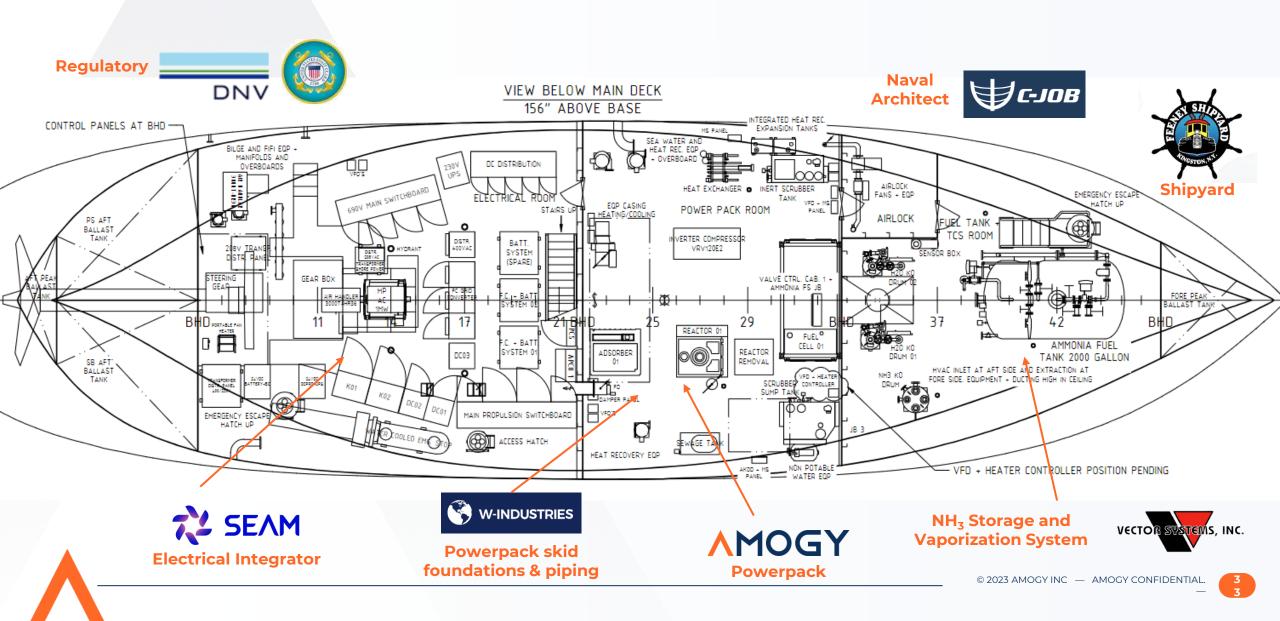
MOGY

- OUR TECHNOLOGY

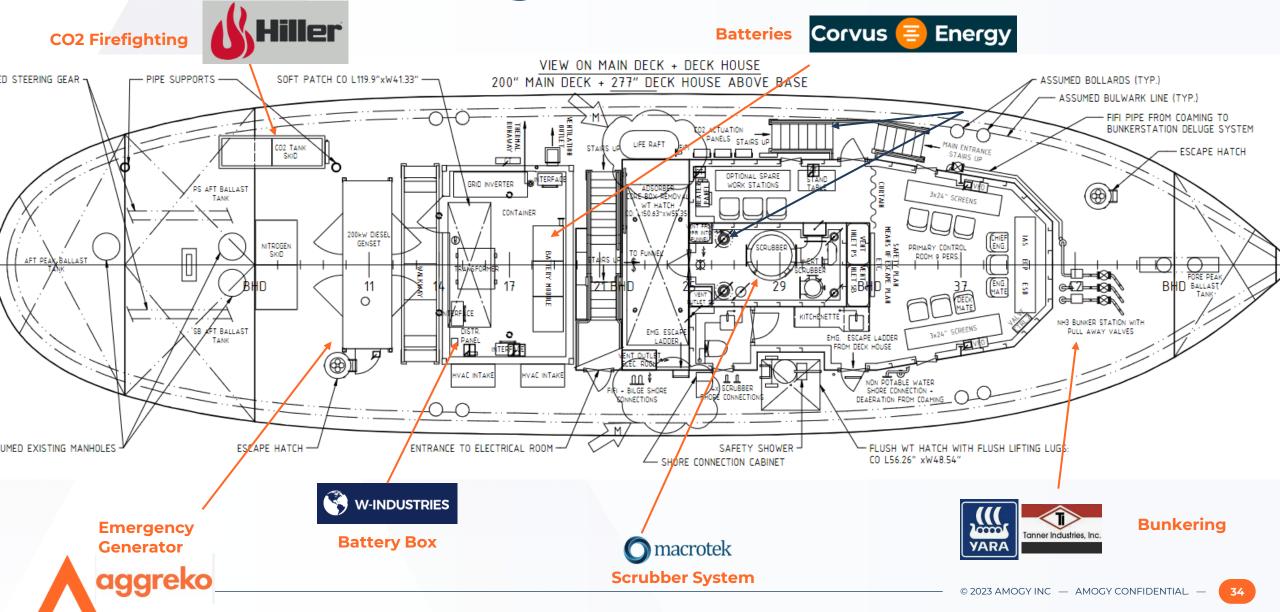
Amogy's Technology

Ammonia-to-Power: Fuel Cell Solution Fuel Cell Solution 105 NH₃ Storage H₂ Fuel Cell Reactor NH₃ Modules Adsorber FUOY NH₃ Electricity Tank Anode Cathode H₂ Engine Solution H₂ Engine Electricity **Ammonia-to-Power: Engine Solution**


Vessel Design & Construction


- Vessel Design & Construction

Vessel Design


Vessel Design & Construction

MOGY General Arrangement & Vendors

Vessel Design & Construction

MOGY General Arrangement & Vendors

- Vessel Design & Construction

Construction Progress

- Vessel Design & Construction

Construction Progress

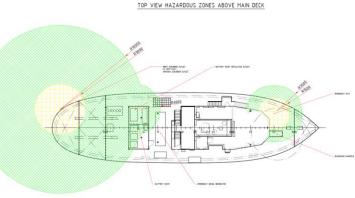
Safety in Design

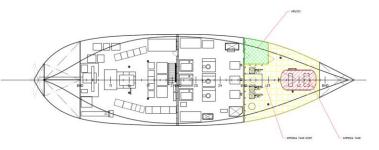
MOGY

- Safety in Design

Safety Philosophy

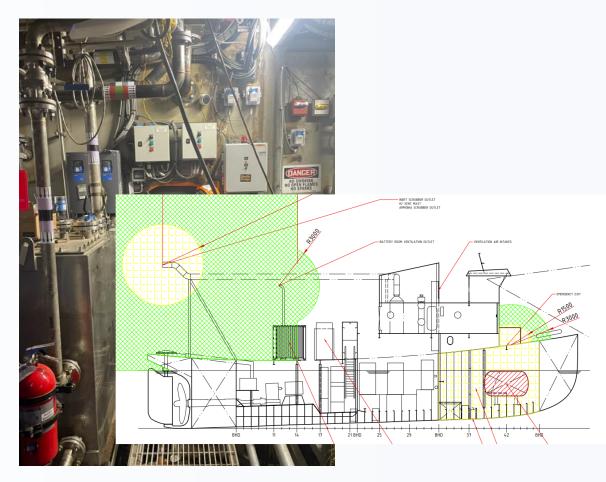
Safety in Design


- Safeguards for potential NH3 & H2 releases
- Hazardous zone plan per IMO and Class Standards
- Double Containment Systems
- Structural Fire Protection
- 3rd Party Support
 - Emergency diesel genset onboard
 - Escort vessel to maintain safety zone during operation
 - Multiple HAZID and HAZOPS conducted
 - Jan 2023 HAZOP moderated by DNV



VIEW ON MAIN DECK + DECK HOUSE

TOP VIEW HAZARDOUS ZONES BELOW MAIN DECK



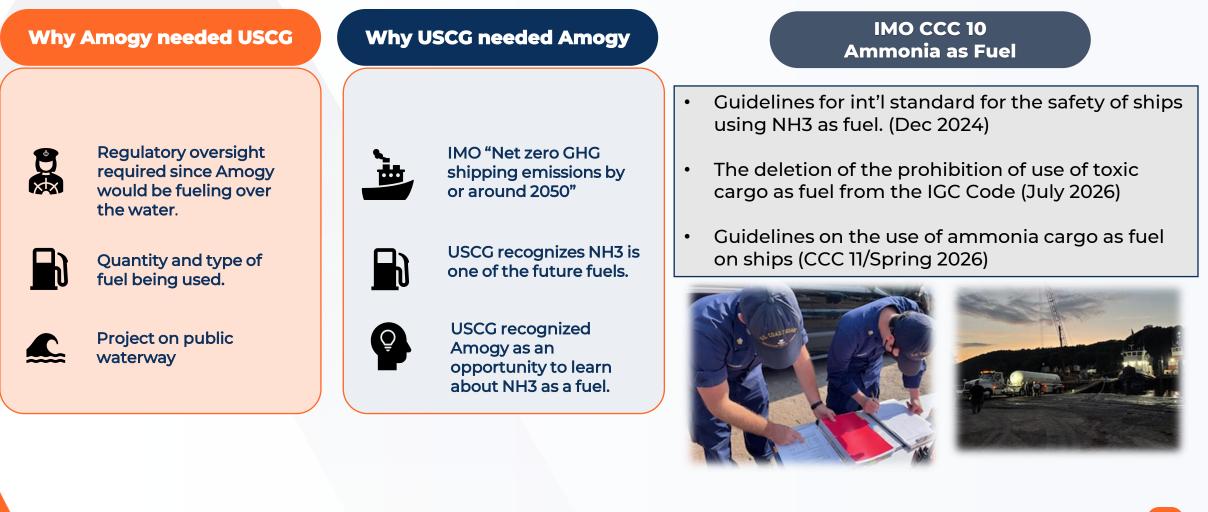
Safety in Design

Gas Leakage & Detection

- Engineering safeguards
 - Entire tank room considered to be the tank connection space
 - Ventilation design ensured negative pressure in tank room to contain leaks
 - Redundant gas detectors with automated ventilation responses and audiovisual indicators
 - Double-walled piping in manned spaces
- Personnel safeguards
 - Defined operator responses to gas alarms
 - Personal gas monitors & other appropriate PPE required for entry

• 24hr onboard alarm monitoring

MOGY


- Safety in Design Bunkering

- Risk-based design led to USCG approval
 - Completed a dispersion analysis for several ammonia release scenarios
 - Submitted multiple revisions of bunkering logistics & personnel safety plans
- Automated process controls to keep the tank room unmanned
- First responders onsite in case of emergency
- Operations:
 - Pre-transfer safety discussion w/all parties
 - Pre-transfer procedure review w/all parties
 - Radio communications across boat, truck, and onshore control station

Regulatory Purpose & Need

Main Challenges and Key Solutions

USCG and Amogy together faced two main challenges:

- Lack of regulatory
 guidance for NH3 as a
 bunker fuel
- Lack of streamlined
 approach to
 execute innovative
 technology
 demonstrations.

USCG and Amogy Used Existing Regulations as Model as solution:

- > Bunkering
 - USCG used existing LNG/LHG regulations and handling of NH3 as a cargo as foundation.
- > Safety -
 - Utilized existing regulations for the safe handling and transport of NH3 (USDOT, OSHA, EPA, DHS)
- > Waivers
 - USCG allowed for waivers and exemptions when demonstrated appropriate

MOGY

July 2024

33 CFR 105 Final Waiver and Sea Trial approval by USCG HQ.

Sept 2024

Final USCG approval for bunkering and sea trial by

USCG SECN

Path to US Coast Guard Approval

CHALLENGE: Lack of regulatory guidance for NH3 as a bunker fuel and no streamlined approach to execute innovative technology demonstrations

SOLUTION: Use existing regulations for LNG and NH3 with waivers when app priate

PROCESS: Regulatory body and industry lead collaborative process

Nov 2022:	March 2023:	May 2023:	June 2023:	Sept 2023:	April 2024:	May 2024:
LOI/WSA submitted to SECNY	In-person presentation to USCG NatioCenter of Expertisenal	In-person meeting at USCG SECNY.	Presentation to Maritime Association of the Hudson River and PANYNJ Harbor Safety Exec Steering Committee.	In-person meeting at NewLab with USCG SECNY.	Virtual meeting with USCG SECNY.	Supplemental LOI/WSA submitted.

*Initial contact made to Sector NY August 2022

NH3 Kraken Demo Collaborators

Regulatory Approval USCG Sector NY USCG HQ

Safety Compliance

Kingston FD Port Ewen FD Ulster County Sheriff's Office

MOGY

<section-header><section-header>

Shipyard & Infrastructure Support Feeney Shipyard

MOGY

MOGY

Regulatory Guidance for the World's First Carbon-Free, Ammonia Powered Vessel

NH3 TTS Bunkering, Sea Trial & Vessel Design

- Vessel dimension: 100 ft.
- Demo date: September 2024
- Vetted design for vessel and bunkering from key regulatory bodies to ensure full safety compliance

Regulatory Readiness, Safety & Security

Key existing regulatory guidance and standards used for NH₃ Kraken sea trial:

Bunkering:

- ✓ United States Coast Guard 33 CFR Parts 105 & 127 as it pertains to LNG
- ✓ Environmental Protection Agency 40 CFR Part 68, Clean Air Act
- ✓ U.S. Department of Transportation 49 CFR Parts 171 180 as it pertains to the transport of NH3
- ✓ Occupational Safety Health Administration 29 CFR 1910.111
- ✓ Department of Homeland Security 6 CFR Part 27

Selected Vessel Design/Engineering Standards for demo project:

- ✓ Tank ASME BPVC Section VIII-1
- ✓ Piping (reformate stream): Spec DWA (H2) /DWC (NH3), 316/316L Stainless Steel Double Wall Piping
- ✓ Fire system: USCG approved
- Hazardous zone plan for the vessel based on ABS regulations for ammonia, hydrogen, and batteries on bulk carrier
- Vessel structural fire protection plan based on requirements from SOLAS, BV, and IGF codes relevant to this application
- HAZard Identification & HAZard and Operability facilitated by DNV
- ✓ AiP and Technology Approval by LR

48