

EXMAR's activities

Infrastructure activities & engineering

OPTI-EX® FPS

LNG/LPG FSUs

Accommodation barges

FLNGs

FSRUs

Drilling participations

Achievements

- Active along the entire LNG value chain: owning & operating
- Pioneer in FSRU (2005), STS Transfer (2006) and FLNG (2017)
- Developed OPTI production platform licence
- +200 engineers with expertise in gas / floating activities
- Shareholder in Vantage & Ventura drilling, 100% owner EOC and DVO

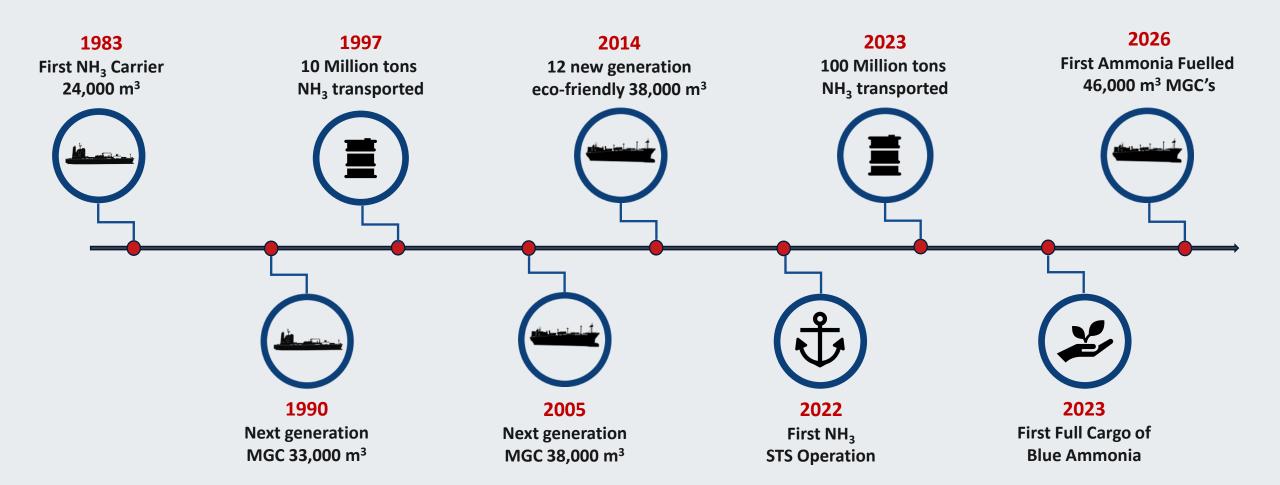
Shipping activities

Fully Pressurized Carriers

Midsize Gas Carriers

Very Large Gas Carriers

References


Achievements

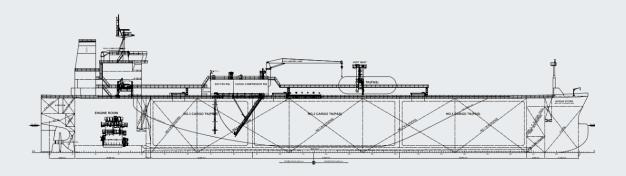
- Largest Owner in the Midsize LPG/Ammonia segment
- Leading innovator in gas shipping with ships from 3,500 up to 88,000 m³
- World's first LPG-fuelled VLGCs delivered in June and Sept 2021
- Pivotal position in ammonia seaborne transport (+100 MTPA)
- World's first NH₃-fuelled seagoing MGCs with delivery in 2026

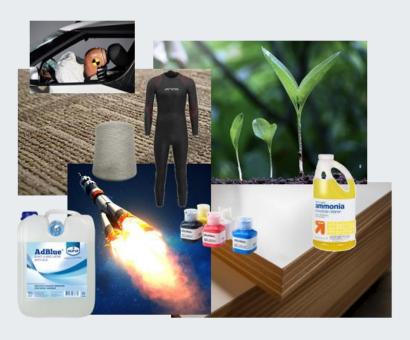
40 years of Ammonia Shipping

Key take away

"Using NH₃ as fuel can reduce the CO, equivalent emissions of sailing vessels with 90%"

Exmar Group © EXMAR - All rights reserved





Ammonia transport and usage

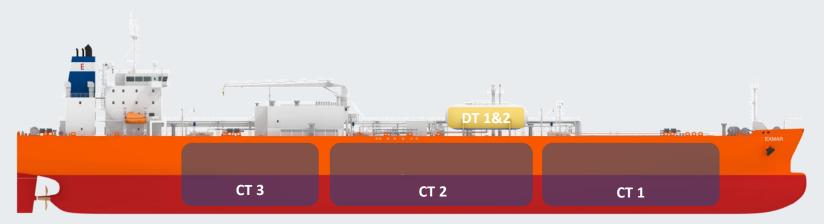
Ammonia transport is not new

- Haber-Bosch in 1909
- Production of 180 MTPA (Million Ton Per Annum)
- 70% for fertilizers
- Transported by train wagons, trucks, pipelines and ships
- At the base of the global food supply chain

Midsize ammonia carrier

- Type A cargo tanks and Type C deck tanks
- Liquid refrigerated at -33°C or pressurized at 8 barg
- Highly toxic

46,000m³ dual fuel LPG / NH₃ carrier

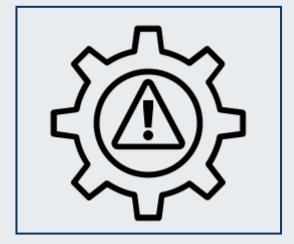

Main dimensions

✓ L_{OA}: 190 m

✓ Beam: 30.4 m

✓ Draft: 10.6 m

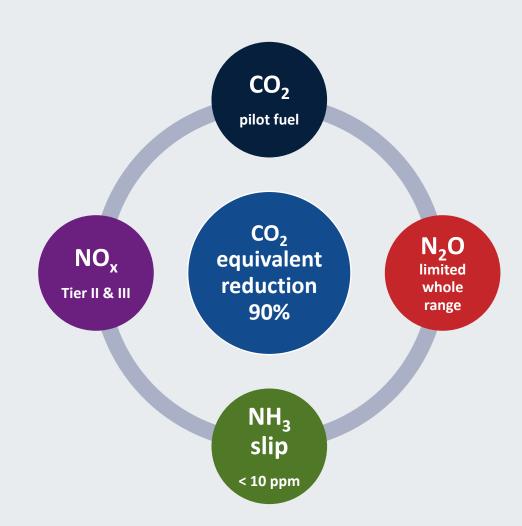
✓ Deadweight: abt. 33,000 ton


- Four ships NH₃ Dual fuel & Shaft Generator in 2026
- HD Hyundai Mipo (HMD), South Korea
- 45,000m³ cargo tank volume & 1,000m³ deck tank volume
- **ECO** class notation, combined compressor & motor room, improved accommodation layout, improved material selection, double hull, lessons learned from previous projects
- Basic design of the ammonia fueled ammonia carrier including fuel supply system is completed.
 Detailed design, including safety studies, is being finalized. Construction will start end of this year

Safe by Design, Reliable by Operations

Different stakeholders

Similar to LPG fuel



Dedicated Seafarers

Tank to Wake emissions

- <u>90% CO₂ Reduction</u>: Ammonia-powered ships cut CO₂-equivalent emissions by up to 90% compared to diesel engines.
- NO_x Compliance: Selective Catalytic Reducer technology ensures NO_x emissions meet Tier II and III standards, with active and passive modes.
- N₂O Control: Diesel cycle combustion reduces N₂O emissions without additional treatment.
- Ammonia Slip: Limited to 10 ppm after SCR
- Pilot Fuel: Minimal CO₂ from Marine Gas Oil, contributing only 5% of fuel energy.
- Well-to-Wake: Emissions depend on ammonia production, with blue and green ammonia promising lower lifecycle impact.

Safety Aspects

HAZID

Double walled pipes

HAZOP

Training

Dispersion analysis

Equivalent level of Safety

Gas detection

Maintenance procedures

Material selection

Conclusions

Ammonia as a Marine Fuel: Ammonia has significant potential to reduce greenhouse gas (GHG) emissions in the shipping industry, with CO_2 -equivalent emissions projected to be up to 90% lower than conventional diesel-powered vessels. The development of low-carbon (blue and green) ammonia production technologies will be key to maximizing the environmental benefits of ammonia as a sustainable marine fuel.

<u>Safety Considerations</u>: The toxic nature of ammonia necessitates rigorous safety measures, including double-walled ammonia supply pipes, gas detection systems, and HAZID/HAZOP safety studies, to mitigate risks.

International Gas Code (IGC) Amendment: Currently IGC 16.9.2 prohibits the use of NH₃ as fuel. IMO has approved amendments to the IGC Code (expected to be adopted at MSC109), allowing ammonia to be used as fuel for ammonia carriers by July 2026, with optional early implementation starting in 2024. Ongoing regulatory advancements, such as changes to the IGC Code, play a critical role in enabling the safe adoption of ammonia fuel in maritime operations, with <u>guidelines</u> expected to evolve further, in order to meet IMO's GHG reduction goals.

<u>Operational Expertise</u>: EXMAR's ammonia-fueled ships are designed to accumulate operational knowledge, which can later be applied to other vessel types, enhancing the future scalability of ammonia as a fuel.

Thank you for your attention

EXMAR - Kristof Coppé – kristof.coppe@exmar.be