

NH₃ cracking - technology de-risking accelerates time to markets

Thomas Wurzel Chief Technology Officer Air Liquide Large Industries World Business Line thomas wurzel@airliquide.com

Ammonia Energy Association, Annual Conference 2024, New Orleans, November 11 - 13, 2024

Agenda

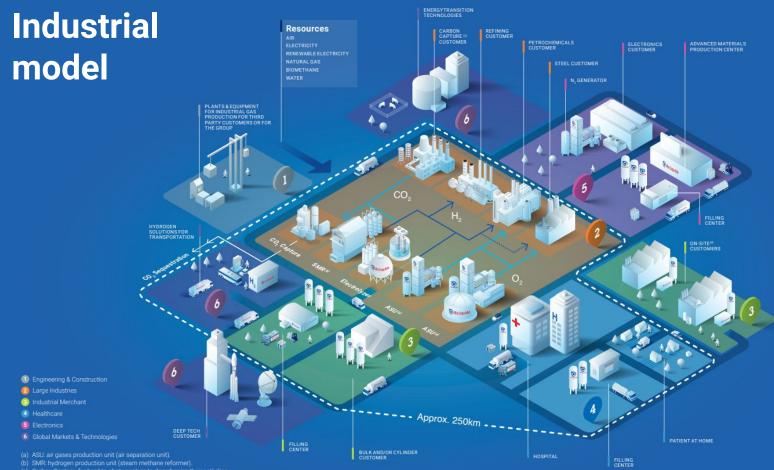
1. The Air Liquide Group in brief

2. Status of NH_3 cracking and LC NH_3 production

3. Wrap-up and conclusions

The Air Liquide Group in brief

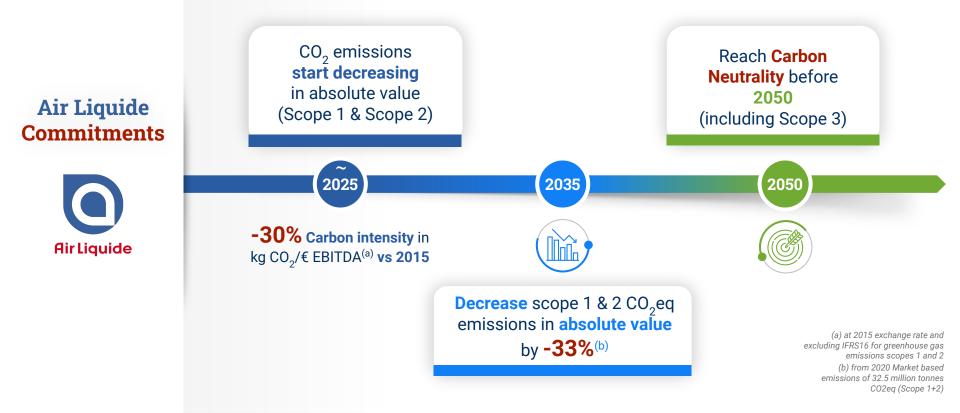
01



2023 Key Figures

 \bigcirc \mathbf{OOO} PRESENT IN **MORE THAN** REVENUE **NET PROFIT** INVESTMENT ~66,300 EMPLOYEES⁽¹⁾ (GROUP SHARE) DECISIONS 60 COUNTRIES⁽¹⁾ €27.6bn 4 MILLION ~€4.3bn €3.1bn **CUSTOMERS & PATIENTS**

(1) Figures as of July 23, 2024


Air Liquide

(c) Carbon Capture for hard-to-abate sectors to decarbonize t

(d) On-site: small gas generator on the customer sit

Abatement of CO₂: Setting a trajectory to reach Carbon Neutrality

Air Liquide

02

Status of NH₃ cracking and LC NH₃ production

Ammonia Energy Association, Annual Meeting 2024, New Orleans, November 11 - 13, 2024

Pivotal techno enablers of our decarbonisation mission

Decarbonizing our H₂/CO assets

- CO₂ capture on existing units
 - A large range of in-house technologies
 - Amine, Cryocap, Rectisol
 - Potentially combined with biofuel
 - Applied from industrial sources for 40 years
 - More than 3Mt/a captured today in over 25 countries for IM
- Development of CCS offer

Port Jerome - in operation Kairos@C - FID Several FEEDs for cement

Hydrogen from electrolysis

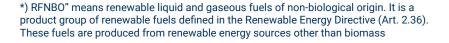
- Development of large scale electrolysis
 - More than 35 electrolysers in operation since 1990
 - Largest PEM (20MW) in operation in Canada since 2021
 - Several large scale (100MW+) electrolysers under development
- Partnerships for electrolysis
 SIEMENS
 CICIGY

Becancour - 20 MW in operation Trailblazer - 20 MW in operation Normand`hy - 200 MW FID

Energy imports

- Europe & Asia expected to remain short on energy
 - Large amounts of REN required to meet Fit for 55
 - Electrification competes with hydrogen production
- AL works on the development of different energy carriers
 - NH₃, LH2, (LOHC)
 - NH₃ as first mover

NH₃ cracking industrialization Studies/FEEDs for LC NH3 Studies/FEEDs for NH3 cracking


Why NH3 cracking closes a gap in the H2 ecosystem

REN NH3 to REN H2

- Most relevant REN H₂ route to import REN power for local REN H₂ production
 - to leverage existing electricity price differentials
 - to compensate REN Power intermittency
 - to meet the EU REN / RFNBO* targets, imports are needed
- Higher REN H₂ price requires strong regulatory support

LC NH3 to LC H₂

- LC H₂ only relevant for significant price differential between "local" and "imported" natural gas and sequestration cost
- Partial cracking of relevance to use LC NH₃ as energy carrier
 - Heat / power / cogen decarbonisation
 - To compensate REN Power intermittency
- LC H₂ significantly cheaper than REN H₂

Ammonia Energy Association, Annual Meeting 2024, New Orleans, November 11 - 13, 2024

Why to demonstrate Ammonia cracking at industrial scale?

1 On paper it looks simple ...

Strong similarity between Steam Reforming and Ammonia Cracking for H₂ production!

Steam Reforming

Natural Gas + Energy + Steam -> Hydrogen + Carbon Dioxide

Ammonia Cracking

Ammonia + Energy -> Hydrogen + Nitrogen

- Less endothermic (= reduced heat flux)
- No coking
- No steam
- No CO₂

... so, why bother when we master Steam reforming?

... but there are relevant challenges

Technology

- Risk of tube embrittlement (nitridation), but no metal dusting
- NO_x formation in case of NH₃ firing
- Catalyst life-time and performance levels

Industrial track record:

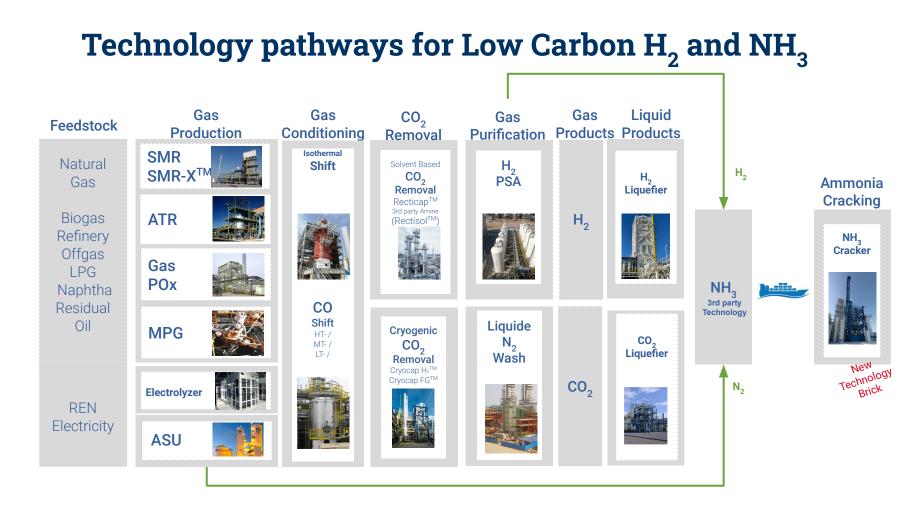
- Small scale metallurgical applications (low efficiency)
- D_2O -production via $NH_{3-x}D_x$ (high pressure)

Not sufficient return of industrial operating experience to fully de-risk a large-scale design

2

ARCAS Demonstration at industrial scale to de-risk Ammonia Cracking

Demonstration of the *complete* process at industrial scale and "real life" conditions with a focus on

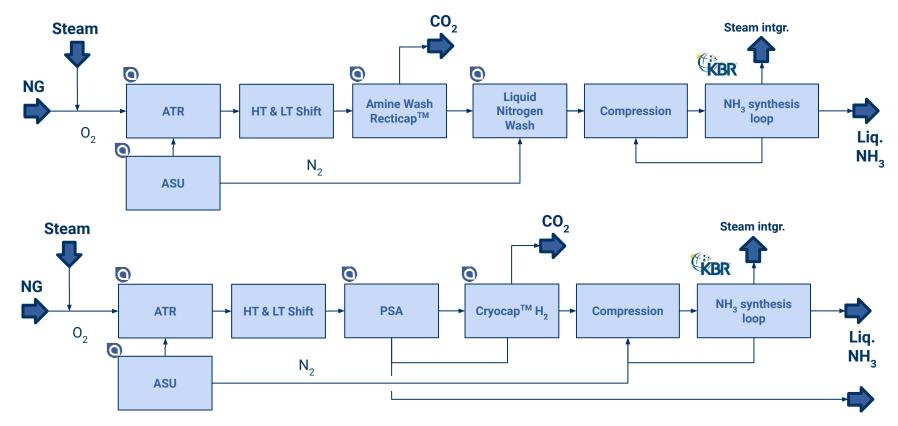

- Ammonia Cracking catalyst performance
- Ammonia Firing (firebox modeling, NO_x)
- Testing of next-generation reactor tubes

Leveraging our global R&D and E&C network, the test campaigns will enable to reach "FID grade TRL" thanks to

- Benchmarking of kinetic and combustion models
- "Real life" experience
- Validation of optimized flowsheet (e. g. Ru vs. Ni, Cryo-separation vs. PSA)

This unit is key for safe and reliable supply of Hydrogen to our large-scale customers

Pave the way towards LC NH3 via partnering


Air Liquide & KBR combining expertise to offer ATR-based low-carbon ammonia and hydrogen technology solutions

Air Liquide is providing its unique expertise and proprietary Autothermal Reformer (ATR) Technology

KBR brings its mastery and world leadership in ammonia production technology ATR with carbon capture for large scale H2 and Ammonia production

With a simplified single train production process to facilitate carbon capture of up to 99%

Air Liquide & KBR integrated Low Carbon Ammonia

>95-99% Global Scope 1 capture rate with ATR is achievable without CO₂ capture from flue gas

Wrap-up and conclusions

03

Ammonia Energy Association, Annual Meeting 2024, New Orleans, November 11 - 13, 2024

Wrap-up and conclusions

1. De-risking technology of NH₃ cracking at scale is a key milestone towards commercialization

- Our industrial demonstrator "ARCAS" will deliver first H₂ molecules late 2024
- Air Liquide is the most advanced on the design & demonstration of NH₃ cracking for H₂ production
- 2. First FIDs using AL NH₃ cracking technology possible as early as H1/2025 upon close-out of the ARCAS test program
- **3.** In parallel, we work on several REN/LC NH₃ projects (engineering stage)
 - to close the upcoming demand gap
 - to enable and to demonstrate the whole supply chain including certification

Air Liqui

