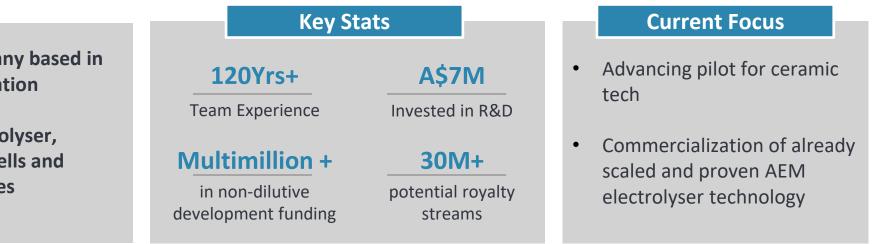
CRT Flexi-Fuel Ammonia Fuel Cell

Clean, Modular Power Enabling the Future of Decarbonized Energy


Cavendish Renewable Technology

Dr. Ani Kulkarni, CEO June 2025 The project gratefully received funding from the Australian Renewable Energy Agency (ARENA) as part of ARENA's Hydrogen Research and Development Funding Round, awarded to Cavendish Renewable Technology Pty Ltd for the project titled Efficient, Scalable, and Modular Ammonia to Hydrogen/Electricity Conversion System. The views expressed herein are not necessarily the views of the Australian Government, and the Australian Government does not accept responsibility for any information or advice contained herein

Company Snapshot

About

- Australian Cleantech Company based in Melbourne, 4 years in operation
- Focused on hydrogen electrolyser, natural gas/ammonia fuel cells and carbon recycling technologies

Core Technologies

Two core technology domains:

- Polymer Electrochemistry -AEM Electrolyser
 scalable, cost-effective green hydrogen/derivatives, proven at industrial scale and out of lab. Licensed to multinational and more JV/Licensing discussions
- Ceramic Electrochemistry next-generation electrolyser C-Cell (highest efficiency without external heat), ammonia/NG fuel cells and CO₂ recycling for clean steel

Team and Partnerships

Collaboration ecosystem: Partnerships with leading US/Australian universities and global multibillion dollar industrial powerhouse
 Facilities & Team: 11 scientists/engineers, 2 workshops in Melbourne, industrial scale electrolyser test platform
 Governance: Board with strong techno-commercial expertise and startup ecosystem

Track Record of Innovation – From Lab to Market

- **Delivered industrial-scale hydrogen electrolyser to partner** as part of a multi-million-dollar development and licensing agreement, with ongoing royalties for Indian production.
- Scaled proprietary electrode coating and stack technology over four years, demonstrating commercial readiness and manufacturing capability.
- Now focused on Ammonia fuel cells and CO₂ recycling , leveraging dedicated, state-of-the-art facilities in Rowville, including CRT's in-house workshop and state of the art CO₂ recycling testing labs

Collaborations/ Partners/ Commercial Contracts

Ammonia Utilisation Challenges & Opportunities

Challenges

- **Poor Combustion**
 - Low flame speed and high NO_x emissions
- **Cracking Requirements** Needs high-temperature reactors and catalysts
- **Costly Purification** Traditional H₂ systems rely on palladium membranes

Integration Complexity

Hard to use with conventional engines or variable loads

Opportunities

Carbon-Free & Renewable

Burns or cracks without producing CO₂. Enables deep decarbonisation using renewable electricity.

4

High Energy Density & Storage

High volumetric energy density and easier to store than hydrogen (liquefies under moderate pressure or cooling).

Established Infrastructure & Scalable Export

Compatible with existing global transport and storage systems. Suitable for large-scale energy export (e.g. Australia to Asia).

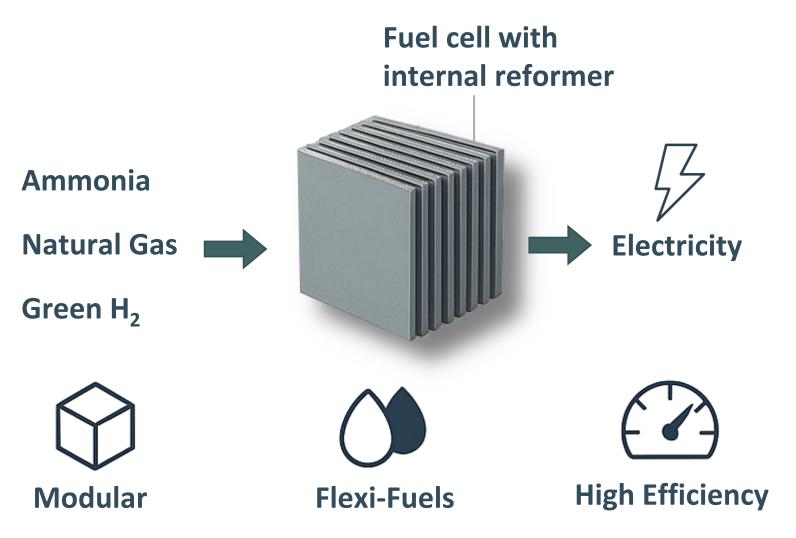
Versatile & Cost-Effective

Usable in combustion engines, fuel cells, or for hydrogen production. Supported by mature industrial processes and a wide global supply.

Ammonia Efficiency

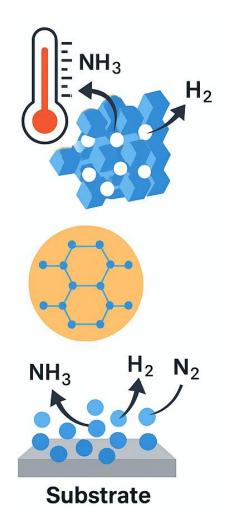
Application	Net Energy Output(MWh per ton NH₃)	Net Efficiency(% of energy input)
PEMFC – Residential Power (CHP)	2.9 – 4.5	29% – 45%
PEMFC – Automotive Power/Grid	1.4 – 2.3	14% – 23%
SOFC – Residential Power (CHP)/Grid	3.7 – 5.2	37% – 54%
Gas Turbine – Combined Cycle (Stationary)	2.6 - 3.4	33% - 64%
Internal Combustion Engine – Automotive	1.8 – 2.5	18% – 25%
Maritime Propulsion (Engine or Fuel Cell)	2.1 – 3.4	40% – 65%
Industrial Heating / High-Temp Processes	4.2 - 4.6	81% - 90%

Why This Technology Is Needed


Rapid global electrification is increasing demand for distributed, reliable power Conventional solutions are **expensive**, **emission-heavy**, or **fuel-restricted**

Our Solution

High Efficiency Technology Limitation Direct chemical-to-electrical conversion with minimal losses Internal Ammonia Cracking SOFCs use waste heat to efficiently crack ammonia High emissions & **Diesel Generators** maintenance Zero Combustion (G No flame = no NO_x emissions Limited duration; poor NH3 🚫 **Fuel Flexibility** scalability **Batteries** H₂ () CH₄ () Accepts ammonia, hydrogen, or natural gas Modular & Scalable Expensive & impurity-Ideal for data centres, remote power, and backup sensitive Palladium Membranes Silent Operation I IX No moving parts = low noise


Challenges with Existing Energy Solutions

Our Technology

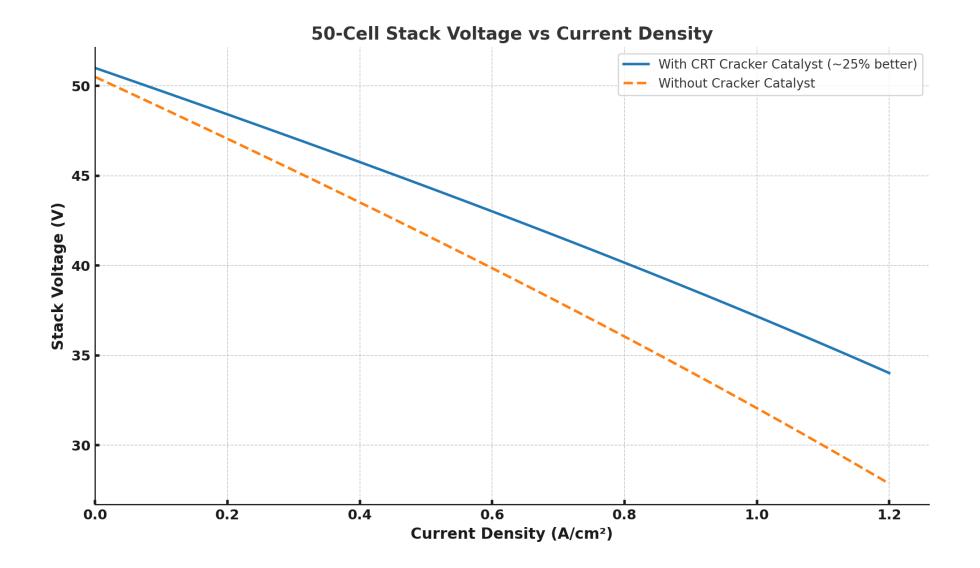
Novelty

- High Conversion Efficiency at Moderate Temperatures: CRT's patented oxide catalysts (CRT-CAT-1 to CAT-3) consistently achieve >99.9% ammonia conversion at 400 °-450 °C without relying on palladium/metal membranes, enabling SOFC integration at lower thermal loads.
- Advanced Nano-Engineered Structure: The catalysts feature high surface area, and mesoporous architecture (~4 nm pores), enhancing gas diffusion and active site exposure for superior catalytic performance.
- Dual-Function Integration with Substrate: When supported on CRT's microengineered substrates, the catalysts not only crack ammonia but also partially purify the gas stream, selectively filtering nitrogen and delivering hydrogen suitable for direct SOFC or PEM use—eliminating the need for costly external separator

NH₃ 10 kW Test System

Key Features

- Fuel Compatibility: 100% anhydrous ammonia, natural gas or hydrogen
- Flexible Configuration: Supports multiple unit formats (SOFC stacks, reactors, reformers)
- Thermal Control: Precision temperature regulation up to 850°C
- Gas Monitoring: Integrated mass flow controllers and sampling ports



- Power Support: Up to 10 kW unit testing
- Cycle Testing: Automated thermal/electrical cycling
- Safety Systems: NH₃ detectors, automatic shutdown, exhaust handling

Applications

- SOFC system validation
- Ammonia cracker development
- Long-term durability trials
- Start-stop and transient testing

Data: 50 cell stack

CRT Flexi Fuel : Ammonia, Natural gas

Natural gas, ammonia, or green hydrogen to electricity

54% efficiency

CRT's novel design ensures maximum conversion, while reducing costs by avoiding the use of expensive critical materials such as Palladium

\$1.7m from ARENA for fundamental R&D

Modular design

Thank you

Contact: Email: apkulkarni@cavendishrenewable.com.au Website: www.cavendishrenewable.com.au