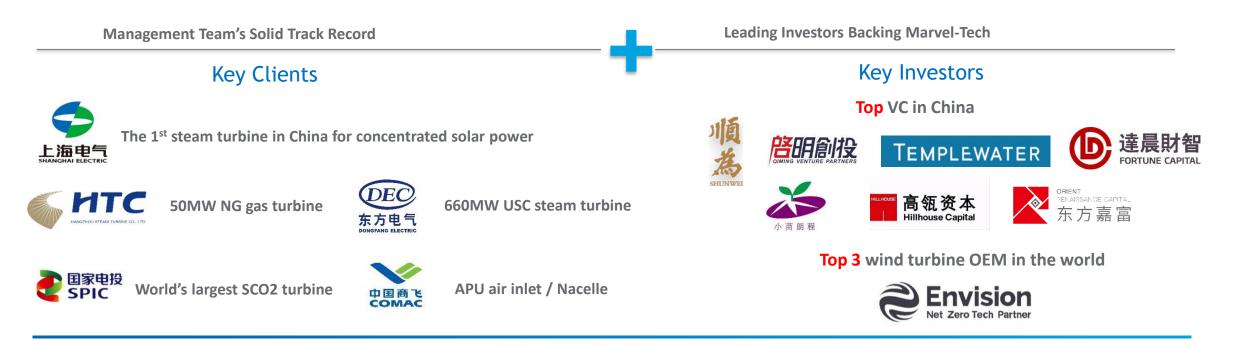


Tri-fuel gas turbine

2025.06

氢能科技・高效零碳


Zero Carbon Emission through Hydrogen Gas Turbine

•

Shanghai Marvel-Tech Co., Ltd. is a high-tech enterprise in the field of green energy founded in 2015 in Shanghai. The company is committed to the development of a new generation of zero-carbon fuels turbine technology. Marvel-Tech is the first and only company worldwide that has developed and manufactured tri-fuel combustion (H2/NH3/NG) turbine to empower green economy.

A full range of R&D centers, Test Centers and Production Site

R&D Center (Shanghai)

- ✓ Area: 3,000 m2
- ✓ R&D Center for gas turbine development and H2/NH3 combustion technology
- ✓ >100 R&D Engineers, over 50% have masters or doctors' degree, covering GT development from scratch to product

H2/NG Gas Turbine Test Stand (Hangzhou)

- / Area: 5,000 m2
- ✓ H2/NG Combustor test stand
- ✓ Gas Turbine Assembly Workshop
- ✓ H2/NG GT engine test stand (up to 5MW)
- the first 100% H2 GT in China successfully developed

Combustion Research Center (Shanghai)

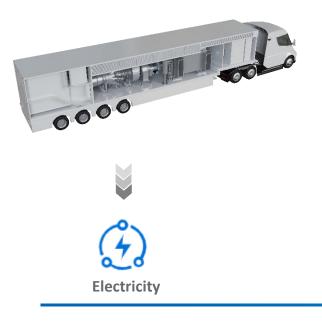
- ✓ Area: 5,000 m2
- ✓ H2/NH3/CH4O atmospheric combustion test stand
- ✓ Gas Turbine Assembly Workshop
- ✓ 3D printing workshop for advanced burner nozzle development

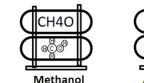
Production Center (Chifeng)

- ✓ Area: 50,000 m2
- ✓ H2/NH3/NG full pressure combustion test stand
- ✓ Gas Turbine Assembly Workshop
- ✓ H2/NH3/NG GT engine test stand (up to 50MW)
- ✓ Green H2/NH3 supply from wind and solar power to enable the P-X-P chain

Power Generation based on different hydrogen carriers

LNG MPa Natural Gas


High Pressure Hydrogen


Different hydrogen carriers

70MPa

Gas Turbine Package Solution:

Mobile version: Mobile Power Unit



Ammonia

Gas Turbine Package Solution:

Stationary version: CHP Power Plant

MGT8000

A Gas Turbine for all Hydrogen Fuels

A New ZERO Emission Solution in Hydrogen Era

Flexible Operation \geq

Can direct burn pure H2, NH3 and CH4 Online Fuel Switch over among H2,NH3 and CH4 in tri-fuel combustor

Best solution to NH3 long duration energy storage

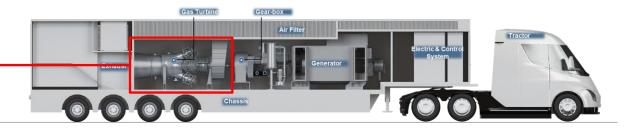
PEM fuel cell can only use 99.99% pure H2 Piston Engine can not burn pure NH3 Limited power of fuel cells and piston engines

High & Stable Performance \geq

>80% overall efficiency (electricity + steam) >8000 kWe electric power output >16 t/h high pressure steam generation >30000EOH between Overhaul

Technology: tri-fuel combustion and mobile power unit

Worldwide FIRST Gas Turbine Tri-fuel Combustor (H2/NH3/CH4)


Worldwide FIRST large size Carbon-neutral mobile Power Generator

SGS Approved technology

Main Features

- highly integrated design, one truck for everything
- Compact and lightweight, 17m long and 70 tons
- High mobility, and adaptable to various road conditions
- Multiple fuel flexibility (NG, H2, NH3, etc.)
- Easy and quick installation, starting up within 4 hours after parking

Core gas turbine engine

Chifeng Production Center

World's only GT center with onsite green Hydrogen/Ammonia production

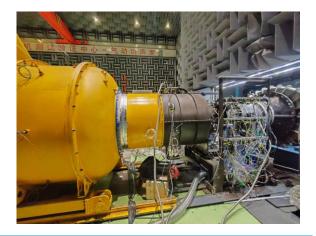
Gas Turbine manufacture capability:

• 20 units of tri-fuel gas turbines per year

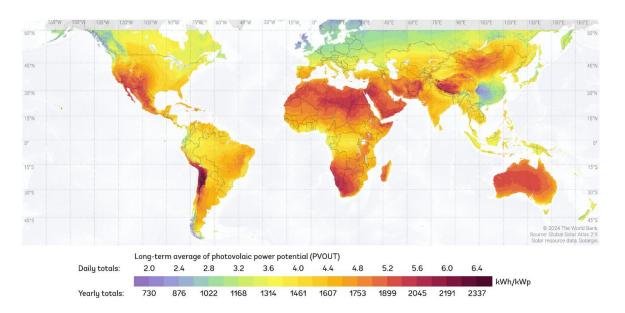
Fuel flexibility for performance testing:

- High pressure H₂ storage > 10 t
- Liquid Ammonia storage > 100 t
- Natural Gas pipeline connection

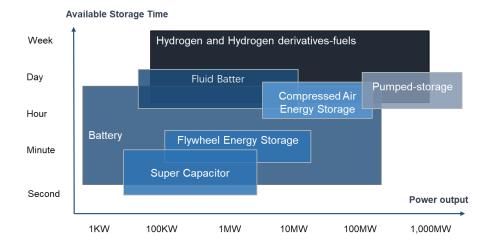
Chifeng Production Center



Chifeng Production Center



Market: transport of renewable energy

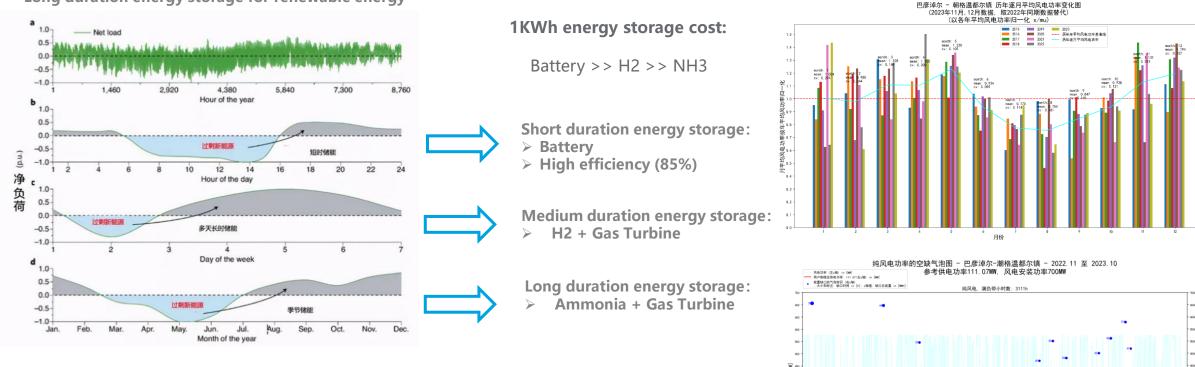


Long distance transportation of renewable energy

✓ There are many areas with very limited renewable energy resources.

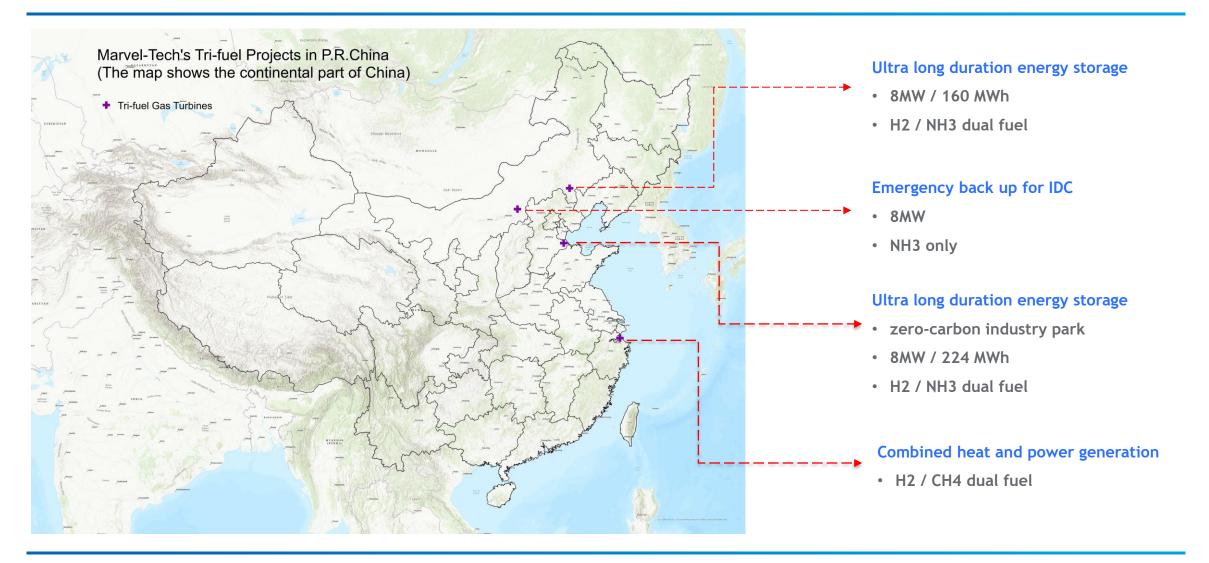
- ✓ Import hydrogen-based molecules to achieve carbon neutral.
- ✓ Direct burning of NH₃/CH₄O in gas turbine to generate electricity is the most efficient and economic way.

Main characteristics		Ammonia	Liquefied hydrogen	LOHC (benzyltoluene) 55.2 62.7
Storage density	Volum. [kg H₂/m³ of carrier] Gravim. [kg H₂/t of carrier]	121.2 ¹ 70.8 177.5 ¹ 1,000		
Energy needs	Conversion [MWh/t H₂] Reconversion [MWh/t H₂]	5.75 11.2	12.0 0.6	0.5 15.0
Technological and process maturity	Conversion – Small scale Conversion – Large scale Storage Transportation – Ship Transportation – Rail Transportation – Truck Reconversion			
Operational value propositions	Advantages	 High storage capacity Mature value chain, except for cracking process 	 No reconversion required High purity hydrogen 	 Easy to store and transport (diesel-like liquid) Use of existing infrastructure
	Disadvantages	 Additional purification step needed High energy require- ments for cracking process 	 Boil-off losses along value chain High energy require- ments for liquefaction Storage and transport complexity 	 Number of cycles impact environmental footprint High energy require- ments for dehydrogenation
	Safety	 Acute toxicity, flammable, explosive under heat, toxic to aquatic life 	 Highly flammable with no visible flame, can form explosive mixtures with air 	 Low toxicity, non- explosive, hazardous to aquatic environment


¹ Properties of liquid ammonia Froven & commercial Prototype demonstrated Technology validated or under development Source: IEA, Roland Berger

Market: storage of renewable energy

小时


Long duration energy storage for renewable energy

- ✓ Area with rich renewable energy: MENA, China, US, Australia.
- ✓ Surplus renewable energy be stored in hydrogen-based molecules for long duration energy storage
- ✓ Gas turbine using these hydrogen carriers can provide electricity for grid-peaking or off-grid backup.

Projects of Marvel-Tech

Thank you !

HYDROGEN

....