Site items in: Articles

On the Ground in Germany
Article

Yet another national laboratory is developing technology for renewable ammonia, this time in Germany at the DLR, the German Aerospace Center. At the Institute of Thermodynamic Engineering, the DLR is developing a method for electrochemical ammonia synthesis at ambient conditions.

On the Ground in Japan
Article

Two talks delivered in December show the tiny steps that allow a country to transition to a sustainable energy economy. The country is Japan. The events hosting the talks were short-format symposia whose evident objective was to draw in business and technical people who might become practically involved in the new energy economy. Both talks highlighted the role to be played by ammonia while also describing competing and complementary technologies.

International R&D on sustainable ammonia synthesis technologies
Article

Over the last few weeks, I've written extensively about sustainable ammonia synthesis projects funded by the US Department of Energy (DOE). While these projects are important, the US has no monopoly on technology development. Indeed, given the current uncertainty regarding energy policy under the Trump administration, the US may be at risk of stepping away from its assumed role as an industry leader in this area. This article introduces seven international projects, representing research coming out of eight countries spread across four continents. These projects span the breadth of next-generation ammonia synthesis research, from nanotechnology and electrocatalysis to plasmas and ionic liquids.

Hydrogen Fueling Station Development in Japan
Article

Two announcements – focused on very different approaches for supplying hydrogen as a transportation fuel – shine a light on Japan’s approach to creating a national hydrogen energy economy. On January 24, the American company Air Products and Chemicals, Inc. issued a press release about the launch of the Shikaoi Hydrogen Farm fueling station in Hokkaido, Japan. The station will be supplied by hydrogen derived from agricultural wastes via anaerobic digestion and Air Products’ biogas purification and steam methane reforming (SMR) technologies. The project was undertaken by a consortium that includes the Japanese companies Nippon Steel and Sumikin Pipeline & Engineering, Air Water, Inc., and Kajima Corporation. Six months earlier, on July 19, 2016, the Japan Science and Technology Agency (JST) announced that another consortium – this one led by Hiroshima University and including Showa Denko, Taiyo Nichi Company, and Toyota Industries – had succeeded in developing “viable technology to produce high-purity hydrogen [from an] ammonia hydrogen station.”

Comparative studies of ammonia production, combining renewable hydrogen with Haber-Bosch
Article

In recent months, research teams from both Canada and Italy have published comparative analyses of sustainable ammonia production pathways. These projects aim to quantify the costs and benefits of combining Haber-Bosch with a renewable hydrogen feedstock. Both projects examine the carbon intensity of ammonia production but, while the Canadian study broadens its remit to a full life cycle analysis, including global warming potential, human toxicity, and abiotic depletion, the Italian study focuses primarily on energy efficiency.

US DOE funding research into sustainable ammonia synthesis
Article

The US Department of Energy (DOE) is currently supporting six fundamental research projects that will develop "novel catalysts and mechanisms for nitrogen activation," which it hopes will lead to future sustainable ammonia synthesis technologies. These projects, announced in August 2016 and administered by the Office of Basic Energy Sciences, aim "to investigate some of the outstanding scientific questions in the synthesis of ammonia (NH3) from nitrogen (N2) using processes that do not generate greenhouse gases."

Methane to Ammonia via Pyrolysis
Article

Eric McFarland, Professor of Chemical Engineering at the University of California Santa Barbara, likes fossil fuels and nuclear energy and is unimpressed by the menu of renewable energy technologies.  But he is worried about climate change and he has an original view on how to modify our current energy system so that we don’t overload the atmosphere with CO2.  He believes the key will be to separate fossil hydrocarbons into gaseous hydrogen and solid carbon.  The chemistry he is developing in this area involves transferring “electrochemical potential” from hydrocarbons to alternative energy carriers.  Ammonia is an energy carrier that McFarland believes is especially promising.

Hydrogen Council - new global initiative launched at Davos
Article

This week, at the World Economic Forum in Davos, the leaders of 13 global companies, representing more than EUR 1 trillion in annual revenues, announced the launch of the Hydrogen Council. This new global initiative is important for obvious reasons: it presents a compelling "united vision and long-term ambition" for hydrogen, it promises global engagement with "key stakeholders such as policy makers, business and hydrogen players, international agencies and civil society," and it pledges financial commitments to RD&D totaling EUR 10 billion over the next five years. It is important for a subtler reason too: it is the first hydrogen industry promotion I've seen that includes ammonia. It includes ammonia both implicitly, encompassing "hydrogen and its compounds," and explicitly, listing ammonia as a "renewable fuel" in its own right.

U.S. EPA's Toxicological Review of Ammonia
Article

On September 20 last year, the U.S. Environmental Protection Agency (EPA) announced the release of the IRIS Toxicological Review of Ammonia - Noncancer Inhalation (Final Report). The Interagency Science Discussion Draft of the Ammonia IRIS Assessment and accompanying comments were also released. The report was the culmination of almost five years of work by the EPA and a specially convened Scientific Advisory Board. September 20 also happened to be the day of the Storage and Safety Session at the 2016 NH3 Fuel Conference. This is a striking coincidence because safety is seen as a key barrier to the adoption of ammonia as a sustainable energy carrier, and the report is a substantial contribution to the literature of ammonia safety.

TU Delft’s Battery-Electrolyzer Technology
Article

On December 14, the journal Energy & Environmental Science published an article on a new technology, “Efficient electricity storage with a battolyser, an integrated Ni–Fe battery and electrolyser.” The lead author is Fokko Mulder, Professor of Materials for Energy Conversion & Storage at the Delft University of Technology (TU Delft) in the Netherlands. The system developed by Mulder and his collaborators accepts electricity from an external source and stores it in the conventional manner of all batteries. The twist is that when the battery is fully charged, any additional incoming electricity is used to generate hydrogen and oxygen via electrolysis. The technology may prove to be a valuable element in a grid-scale ammonia-based energy system.