Site items in: Articles

Rapid Long-Term Growth Projected for Fuel Cells
Article

Last month the Fuji-Keizai Group released its latest biennial review of the global market for fuel cells, “Future Outlook for Fuel Cell-Related Technology and Market in 2018.”  This is at least the third iteration of the report, and comparison across the different editions shows how expectations have evolved.  The report features both polymer electrolyte and solid oxide fuel cells.  Although not mentioned in the report, a number of groups are working on direct ammonia versions of both technologies.

Fuels Without Carbon: Prospects and the Pathway Forward for Zero-Carbon Hydrogen and Ammonia Fuels
Article

A new report from CATF, Fuels Without Carbon: Prospects and the Pathway Forward for Zero-Carbon Hydrogen and Ammonia Fuels, explores how a massive scale-up in the production and use of zero-carbon hydrogen and ammonia might help decarbonize segments of the power sector, the industrial sector, and the transportation sector (both marine and ground). Fuels Without Carbon looks at how the availability of zero-carbon hydrogen and ammonia fuels could help address several vexing climate-energy challenges, and it examines the steps that need to be taken to fully understand and address the safety and environmental risks associated with the two chemicals. Fuels Without Carbon also identifies several public and private sectors initiatives — including a few being pursued by CATF — for analyzing the opportunities and challenges associated with hydrogen and ammonia fuel, educating stakeholders about the potential benefits and risks, designing and advocating for appropriately supportive policies, and engaging with key power and mobility companies.

Ammonia plant revamp to decarbonize: Yara Pilbara
Article

This week, Yara announced major progress toward producing "green ammonia" at its plant in Pilbara, Australia. Its new partner in this project is ENGIE, the global energy and services group, which last year made a major commitment to developing large-scale renewable hydrogen projects. I first reported Yara's plans for a solar ammonia demonstration at its Pilbara plant in September 2017. This week's announcement means that the Pilbara project has moved to the next feasibility phase. However, major elements of the project have already been designed and built: during last year's scheduled turnaround for plant maintenance, the hydrogen piping tie-in was completed - meaning that the Haber-Bosch unit is ready to receive hydrogen directly, as soon as an electrolyzer has been built to supply it with renewable feedstock.

Ammonia's Role in the Hydrogen Society
Article

Last month I had the opportunity to reflect on “Ammonia’s Role in the Hydrogen Society.”  This was the title of a speech I gave at the Ammonia Energy International Workshop in Tokyo.  The Workshop was held on January 25 by the Energy Carriers initiative of the Japanese Government’s Strategic Innovation Promotion Program (SIP) as it moves toward its terminal date of March 31, and as the Green Ammonia Consortium, which grew out of the Energy Carriers program, prepares for its official launch in the same time frame.  The key takeaways from my speech are that ammonia is widely seen as a contributor to the viability of hydrogen energy, but the extent of its potential role is not appreciated.

UK Department of Transport recommends launch of ammonia / hydrogen powered vessels within 5-15 years
Article

In January 2019, the UK Department for Transport published a policy paper outlining its vision for the maritime sector over the coming decades. Among the many recommendations contained in Maritime 2050: navigating the future, is a medium-term objective to place "a group of hydrogen or ammonia powered domestic vessels in operation." The "strategic ambition" driving this recommendation is the expectation that "the UK will ... lead the way in taking action on clean maritime growth enjoying economic benefits from being an early adopter or fast mover." Moving forward, these recommendations will be developed into policy in the government's forthcoming Clean Maritime Plan, scheduled to be published in Spring 2019.

Ammonia Included in Australian Study of Novel Combustion Technology
Article

The most recent meeting of the Ammonia Energy Association-Australia was held on December 6, 2018.  Ciaran McDonnell-Worth, the organization’s coordinator, reported that there was “excellent discussion throughout the meeting which was bolstered by the presence of several new participants.”  One of those participants, Bassam Dally, Mechanical Engineering Professor at University of Adelaide, spoke about a novel technology for ammonia combustion that may have application in high-temperature industrial processes and beyond.

Ammonia plant revamp to decarbonize: Yara Sluiskil
Article

Last year, Yara Sluiskil, in the Netherlands, upgraded its existing ammonia plant by introducing a hydrogen pipeline connection, thereby reducing its reliance on fossil fuels. The pipeline was commissioned in October 2018 and now "ensures the efficient and safe transport of hydrogen," which was previously a waste-product at Dow's nearby ethylene cracker. Already, the project "delivers a CO2 saving of 10,000 tons" and a decrease in energy consumption of "0.15 petajoules (PJ) per year." This is, perhaps, the first ammonia plant decarbonization revamp, and it shows that it is both possible and affordable to reduce emissions from existing ammonia plants today.

The Allam Cycle's Nexus with Ammonia
Article

8 Rivers Capital, the developer of “the Allam Cycle, the only technology that will enable the world to meet all of its climate targets without having to pay more for electricity,” unveiled plans in November 2018 for a “billion-dollar clean energy production site” in New Zealand whose outputs are slated to include low-carbon ammonia. That is a sentence with a lot of angles, and unpacking it will take some effort. So let’s start right in with the Allam Cycle.

MAN Energy Solutions: an ammonia engine for the maritime sector
Article

In June 2018, MAN Diesel & Turbo rebranded itself MAN Energy Solutions, reflecting the maritime engine market leader's "strategic and technological transformation" towards sustainability. The company was "taking a stand for the Paris Climate Agreement and the global pursuit of a carbon-neutral economy." According to Uwe Lauber, Chairman of the Board, "our activities have a significant impact on the global economy. In shipping, for example, we move more than half of the global stream of goods ... [and] the path to decarbonising the maritime economy starts with fuel decarbonisation, especially in container shipping." This week, the company took a significant step towards realizing its vision, disclosing that it is "pressing ahead with developing ... an ammonia-fuelled engine." This builds on the technology development pathway that MAN ES presented at the NH3 Energy+ Topical Conference at Pittsburgh in October 2018. The budget and timeline are set: the €5 million (USD$5.7 million) project will last two to three years and, if the shipowners decide to deploy the finished product, "the first ammonia engine could then be in operation by early 2022."

Mission Possible: decarbonizing ammonia
Article

Mission Possible, a major report published at the end of 2018, concludes that decarbonizing ammonia production by 2050 is both technically and economically feasible. Among its 172 pages of assumptions, analysis, and explanation, Mission Possible examines production pathways and markets for green ammonia and its derivative green nitrogen fertilizers. It addresses the relatively straightforward issue of how to replace fossil feedstocks with renewable hydrogen for ammonia synthesis, as well as the more complex question of how to source or supplant the carbon dioxide molecules contained in urea, the most common nitrogen fertilizer. The report's economic conclusions will not surprise anyone involved in ammonia production or politics. Yes, green ammonia is currently more expensive than fossil ammonia, although it won't be for long. And no, "none of the increases in end-consumer prices are sufficiently large to be an argument against forceful policies to drive decarbonization."