Site items in: Content by Author Chuancheng Duan

Energy Storage through Electrochemical Ammonia Synthesis Using Proton-Conducting Ceramics
Presentation

In this presentation, we provide an overview of an ambitious project to store renewable energy through electrochemical synthesis of ammonia. The joint project between the Colorado School of Mines (Golden, CO) and FuelCell Energy, Inc. (Danbury, CT) is supported through the U.S. Department of Energy ARPA-E ‘REFUEL’ program. The research and development team seeks to harness the unique properties of proton-conducting ceramics to activate chemical and electrochemical reactions for efficient and cost-effective synthesis of ammonia. The system concept is shown in Figure 1; renewable electricity is used to drive electrolysis of the H2O feedstock to form hydrogen. This electrochemically produced…

Presentation

Proton-conducting ceramics synthesized with solid-state reactive sintering are employed as electrolytes for the synthesis of ammonia from hydrogen and nitrogen gases in electrolytic cells. Additionally, these cells function with excellent long-term stability and high efficiency when operated in galvanic (fuel cell) mode using ammonia fuel. Advances in electrolyte compositions and synthesis techniques are discussed alongside cell performance metrics.