Site items in: Content by Author Taku Kudo

Two Stage Ammonia Combustion in a Gas Turbine like Combustor for Simultaneous NO and Unburnt Ammonia Reductions
Presentation

Ammonia is expected not only as a hydrogen energy carrier but also as a carbon free fuel. Recently, ammonia fueled gas turbine combustor was successfully demonstrated. However, large amount of NOx was produced when ammonia burns because ammonia includes nitrogen atom in the ammonia molecule. In addition, unburnt ammonia concentration in exhaust gas also needs to be reduced. In this study, we proposed a combustion concept in order to reduce NO and unburnt ammonia concentrations in the exhaust gas simultaneously in a gas turbine like model swirl combustor. In this concept, two stage (rich – lean) combustion was employed. Two…

Presentation

Ammonia is expected not only as hydrogen energy carrier but also as carbon free fuel. For an industrial use of ammonia combustor, ammonia flame stabilized on a swirl combustor should be clarified. However, in order to realize an ammonia-fueled combustor, there are some issues to be solved, such as a difficulty of flame stabilization and reductions of NOx and ammonia emission. In this study, stabilization and emission characteristics of ammonia / air flames stabilized by a model swirl burner are investigated. The outer and inner diameters of the swirler are 24 mm and 14 mm, respectively, and the swirl number…

Presentation

Fundamental flame characteristics must be required for the design of ammonia fueled combustors. However, few studies of ammonia combustion have been conducted. In this study, fundamental ammonia/air premixed laminar flame characteristics, such as NO formation/reduction mechanisms and laminar burning velocity, were experimentally and numerically investigated. NO mole fraction in burned gas from ammonia/air premixed flames were investigated using a stainless-steel nozzle burner. Experiments were conducted at various equivalence ratios and pressures. As a result, NO mole fraction in burned gas reduced with the increase in equivalence ratio and pressure. Formation/reduction mechanisms of NO were numerically investigated. Laminar burning velocity and…