ANNOUNCEMENT: California's Stanford University held a two-day workshop this week to launch a new effort aimed at advancing hydrogen “for stable, long-term, low-carbon energy storage.” The Stanford Hydrogen Focus Group intends to support research, serve as a technical resource, and disseminate information via workshops and symposia.
Content Related to Toyota Motor
Ammonia as a Hydrogen Carrier for Hydrogen Fuel Cells
In the last 12 months ... Consider the attributes that characterize a good hydrogen carrier: liquid state at ambient conditions; high volumetric and gravimetric energy density; low propensity to create lethal hazards when transported, stored, and used. Now consider that ammonia is superior to hydrogen itself in every one of these areas. Given this, it stands to reason that proponents of hydrogen fuel cells should embrace ammonia as a valuable enabling technology that can elevate the feasibility and improve the economics of fuel-cell-based systems. And indeed this embrace became evident over the last year.
CSIRO Demonstrates Ammonia-to-Hydrogen Fueling System
On August 8th Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) gave a public demonstration of its newly developed ammonia-to-hydrogen fueling technology. In an interview this week with Ammonia Energy, Principal Research Scientist Michael Dolan reported that the demonstration drew more media attention than any event in CSIRO’s history – “by a comfortable margin.” The reporting sounded a set of celebratory themes, summed up by this headline from the Australian Broadcasting Corporation: Hydrogen fuel breakthrough in Queensland could fire up massive new export market. The stories, in other words, focused on what the demonstration could mean for fuel cell vehicles (FCVs) and the Australian economy. They did not penetrate to the heart of the matter which involved a practical development whose importance can be uniquely appreciated by the ammonia energy community.