Catalytic conversion of dinitrogen (N2) into ammonia under ambient conditions represents one of the Holy Grails in catalysis and surface science. As a potential alternative to the Haber-Bosch process, electrochemical reduction of N2 to NH3 is attractive owing to its renewability and flexibility, as well as sustainability for producing and storing value-added chemicals from the abundant feedstock of water and nitrogen on earth. However, owing to the kinetically complex and energetically challenging N2 reduction reaction (NRR) process, NRR electrocatalysts with high catalytic activity and high selectivity are rare. In this contribution, as a proof-of-concept, we demonstrate that both the NH3…