Site items in: Ammonia Combustion

Auto-Ignition Kinetics of Ammonia at Intermediate Temperatures and High Pressures
Presentation

The anxiety over global greenhouse gas emissions has intensified the demand for the development and use of CO2-neutral energy technologies. Ammonia is now attracting attention as a carbon-free energy carrier, because it has good energy density (22.5 MJ/kg) and can be easily liquefied (about 10 bar at 298 K). In addition, ammonia is produced according to the Haber-Bosch process, which makes it one of the most widely-produced inorganic chemical in the world. It could also be produced with renewable energy sources such as wind and solar energy using P2X technology. As a potential fuel for applications in gas turbines and…

Improved Method of Using Hydrogen and Ammonia Fuels for an Internal Combustion Engine
Presentation

A tractor mounted internal combustion engine is fueled by Hydrogen or a combination of Hydrogen and Ammonia. Developments of an improved method of fuel injection and ignition control. Hydrogen is port injected in the intake manifold, and liquid ammonia is injected in the throttle body. A dual fuel ECU, Engine Control Unit, controls the fuel mixtures and the firing of multiple coils for ignition. The paper will address significant engine performance improvements and the resulting fuel consumption and engine emissions levels.

Ignition of an Aqueous Ammonia / Ammonium Nitrate Fuel
Presentation

To achieve a truly renewable energy market, the intermittent power generation of sources such as solar and wind must be overcome. Renewable ammonia can be synthesized using these sources to be used as a long-term energy storage medium. For this reason, the use of ammonia as a synthetic fuel has garnered significant attention in recent years. Aqueous AAN (ammonia/ammonium nitrate) is a carbon-free ammonia based monofuel suitable for energy storage applications. This fuel is safe to store and transport, and its combustion products consist mainly of water and nitrogen. Effective use of this fuel requires an in-depth understanding of the…

Optimization of the NOx Reduction Condition in the Combustion Furnace for the Combustion of
Presentation

In late years the discharge of the CO2 became the very big problem. The combustion of the fossil fuel in particular exhausts much CO2. Our project team (SIP) is intended to reduce CO2 by using NH3 (10%~30%) in substitution for heavy oil. The ‘SIP energy carriers’ was launched in 2014 (SIP: Strategic Innovation Promotion Program). Ammonia direct combustion team was formed. We conducted a co-research program with Osaka University in this project. We performed experiment of heavy oil – NH3 mixed combustion in the 10kW furnace. As the results, we obtained much experimental data. When we were combusted NH3 and…

Simulation Analysis of NH3 Mixed Combustion in Clinker Manufacturing Process
Presentation

Recent years, the action for the low-carbon society becomes active all over the world. NH3 has potential to become the free-carbon energy source. In SIP project, that Cabinet Office started, we work on the technology development applying NH3 to the field of industrial furnace (SIP: Strategic Innovation Promotion Program). In this study, we evaluated the effect of NH3 use in the cement clinker manufacturing process. Cement manufacturing is one of the fields of industry to exhaust large amounts of CO2. As past works, we studied for the reduction of heat consumption rate, troubleshooting and so on by using kiln operation…

Two Stage Ammonia Combustion in a Gas Turbine like Combustor for Simultaneous NO and Unburnt Ammonia Reductions
Presentation

Ammonia is expected not only as a hydrogen energy carrier but also as a carbon free fuel. Recently, ammonia fueled gas turbine combustor was successfully demonstrated. However, large amount of NOx was produced when ammonia burns because ammonia includes nitrogen atom in the ammonia molecule. In addition, unburnt ammonia concentration in exhaust gas also needs to be reduced. In this study, we proposed a combustion concept in order to reduce NO and unburnt ammonia concentrations in the exhaust gas simultaneously in a gas turbine like model swirl combustor. In this concept, two stage (rich – lean) combustion was employed. Two…

Development of Low-NOx Combustor of Micro Gas Turbine Firing Ammonia Gas
Presentation

A massive influx of renewable energy is required in order to mitigate global warming. Although hydrogen is a renewable media, its storage and transportation in large quantity is difficult. Ammonia, however, is a hydrogen energy carrier, and its storage and transportation technology is already established. Although ammonia fuel combustion was studied in the 1960s in the USA, the development of an ammonia fuel gas turbine had been abandoned because combustion efficiency was unacceptably low [1]. Recent demand for hydrogen energy carrier revives the usage of ammonia fuel. The National Institute of Advanced Industrial Science and Technology (AIST) in Japan, in…

Ammonia-Hydrogen Power for Combustion Engines
Presentation

Ammonia blends can potentially become a breakthrough chemical for power generation, cooling storage and distribution of energy. Gas turbines and internal combustion engines are potential candidates for the use of the resource in an efficient way that will enable commissioning of combined cycles to power communities around Europe and around the world while serving as sources of heat and chemical storage. Therefore, development of these systems will bring to the market a safer, zero carbon fuel that can be used for multiple purposes, thus decentralizing power generation and increasing sustainability in the communities of the future whilst positioning the developing…

Ammonia for Power: a literature review
Article

"Ammonia for Power" is an open-access literature review that includes over 300 citations for recent and ongoing research in the use of ammonia in engines, fuel cells, and turbines, as well as providing references to decades of historical case studies and publications. The review, written by a consortium of ammonia energy experts from the University of Cardiff, University of Oxford, the UK's Science and Technology Facilities Council, and Tsinghua University in China, can be found in the November 2018 edition of Progress in Energy and Combustion Science.

IHI First to Reach 20% Ammonia-Coal Co-Firing Milestone
Article

The Japanese manufacturer IHI Corporation announced on March 28 that it had successfully demonstrated the co-firing of ammonia and coal in a fuel mix composed of 20% ammonia. Ammonia-coal co-firing had previously been demonstrated by Chugoku Electric in a fuel mix composed of just 0.6-0.8% ammonia. IHI says its ultimate goal is to “construct a value chain that connects the production and use of ammonia, using combustion technology of gas turbines and coal-fired boilers, using ammonia as fuel.”