Site items in: Ammonia Combustion

Optimization of the NOx Reduction Condition in the Combustion Furnace for the Combustion of
Presentation

In late years the discharge of the CO2 became the very big problem. The combustion of the fossil fuel in particular exhausts much CO2. Our project team (SIP) is intended to reduce CO2 by using NH3 (10%~30%) in substitution for heavy oil. The ‘SIP energy carriers’ was launched in 2014 (SIP: Strategic Innovation Promotion Program). Ammonia direct combustion team was formed. We conducted a co-research program with Osaka University in this project. We performed experiment of heavy oil – NH3 mixed combustion in the 10kW furnace. As the results, we obtained much experimental data. When we were combusted NH3 and…

Simulation Analysis of NH3 Mixed Combustion in Clinker Manufacturing Process
Presentation

Recent years, the action for the low-carbon society becomes active all over the world. NH3 has potential to become the free-carbon energy source. In SIP project, that Cabinet Office started, we work on the technology development applying NH3 to the field of industrial furnace (SIP: Strategic Innovation Promotion Program). In this study, we evaluated the effect of NH3 use in the cement clinker manufacturing process. Cement manufacturing is one of the fields of industry to exhaust large amounts of CO2. As past works, we studied for the reduction of heat consumption rate, troubleshooting and so on by using kiln operation…

Two Stage Ammonia Combustion in a Gas Turbine like Combustor for Simultaneous NO and Unburnt Ammonia Reductions
Presentation

Ammonia is expected not only as a hydrogen energy carrier but also as a carbon free fuel. Recently, ammonia fueled gas turbine combustor was successfully demonstrated. However, large amount of NOx was produced when ammonia burns because ammonia includes nitrogen atom in the ammonia molecule. In addition, unburnt ammonia concentration in exhaust gas also needs to be reduced. In this study, we proposed a combustion concept in order to reduce NO and unburnt ammonia concentrations in the exhaust gas simultaneously in a gas turbine like model swirl combustor. In this concept, two stage (rich – lean) combustion was employed. Two…

Development of Low-NOx Combustor of Micro Gas Turbine Firing Ammonia Gas
Presentation

A massive influx of renewable energy is required in order to mitigate global warming. Although hydrogen is a renewable media, its storage and transportation in large quantity is difficult. Ammonia, however, is a hydrogen energy carrier, and its storage and transportation technology is already established. Although ammonia fuel combustion was studied in the 1960s in the USA, the development of an ammonia fuel gas turbine had been abandoned because combustion efficiency was unacceptably low [1]. Recent demand for hydrogen energy carrier revives the usage of ammonia fuel. The National Institute of Advanced Industrial Science and Technology (AIST) in Japan, in…

Ammonia-Hydrogen Power for Combustion Engines
Presentation

Ammonia blends can potentially become a breakthrough chemical for power generation, cooling storage and distribution of energy. Gas turbines and internal combustion engines are potential candidates for the use of the resource in an efficient way that will enable commissioning of combined cycles to power communities around Europe and around the world while serving as sources of heat and chemical storage. Therefore, development of these systems will bring to the market a safer, zero carbon fuel that can be used for multiple purposes, thus decentralizing power generation and increasing sustainability in the communities of the future whilst positioning the developing…

Ammonia for Power: a literature review
Article

"Ammonia for Power" is an open-access literature review that includes over 300 citations for recent and ongoing research in the use of ammonia in engines, fuel cells, and turbines, as well as providing references to decades of historical case studies and publications. The review, written by a consortium of ammonia energy experts from the University of Cardiff, University of Oxford, the UK's Science and Technology Facilities Council, and Tsinghua University in China, can be found in the November 2018 edition of Progress in Energy and Combustion Science.

IHI First to Reach 20% Ammonia-Coal Co-Firing Milestone
Article

The Japanese manufacturer IHI Corporation announced on March 28 that it had successfully demonstrated the co-firing of ammonia and coal in a fuel mix composed of 20% ammonia. Ammonia-coal co-firing had previously been demonstrated by Chugoku Electric in a fuel mix composed of just 0.6-0.8% ammonia. IHI says its ultimate goal is to “construct a value chain that connects the production and use of ammonia, using combustion technology of gas turbines and coal-fired boilers, using ammonia as fuel.”

NH3 / N2 / O2 Non-Premixed Flame in a 10 kW Experimental Furnace – Characteristics of Radiative Heat Transfer
Presentation

There are severe issues on increasing amount of carbon dioxide (CO2) emission in the world. Many studies are devoted on alternative fuels. One of superior candidates is the utilization of hydrogen energy which can realize a low-carbon and hydrogen-based society. Ammonia might play an important role which is zero emission of CO2, and is useful for hydrogen energy carrier as a clean energy. Additionally, ammonia is an easily-liquefiable fuel with pressure of about 0.86 MPa and temperature of 293 K. Commercially, ammonia is produced in large quantity by the Haber–Bosch process. It is also to be produced by using catalyst…

Presentation

Ammonia is a carbon-free fuel, so it has potential to reduce carbon dioxide emission from power plants when used as a fuel. However, combustion characteristics of ammonia are notably different from hydrocarbon fuels, especially regarding NOx emission [1]. The nitrogen atom of the ammonia molecule may cause high NOx emission. Therefore, special techniques to reduce NOx emission are essential for gas turbine combustors which burn ammonia and natural gas. The results of our previous study [2] showed the characteristics of NOx emission in single-stage combustion. In this study, the concept for low-emission combustion in two-stage combustion has been examined numerically…

Presentation

Based on its well-known merits ammonia has been gaining special attention as a potential renewable energy carrier which can be replaced in power generation systems. Considering its low flame speed and its potential for producing fuel NOx as the main challenges of combusting ammonia, flame stability, combustion efficiency, and NOx formation are experimentally investigated. Focus is on premixed ammonia-hydrogen-air flames with high mixture fractions of ammonia (60-90% by volume) under standard temperature and pressure conditions. We introduce silicon-carbide (SiC) porous block as a practical and effective medium for ammonia-hydrogen-air flame stabilization which enables stable and efficient combustion of the mixtures…