Site items in: Ammonia Gas Turbine

Ammonia – and Other Nitrogen-Based Fuels
Article

Next month the print edition of Fuel Processing Technology will feature a paper entitled “Auto-ignition of a carbon-free aqueous ammonia/ammonium nitrate monofuel: a thermal and barometric analysis.” This title is provocative. First, what is this idea of a fuel composed of a mixture of ammonia and ammonium nitrate (AN)? If ammonia is a good fuel, is it made better with the addition of ammonium nitrate? Second, why is it aqueous? Is the presence of water a feature or a bug? Third, what is a monofuel and why is this term used when the fuel is a mixture of two molecular species? And finally, why is the paper ultimately about auto-ignition?

Power to Ammonia feasibility study
Article

The Institute for Sustainable Process Technology has just published a feasibility study that represents a major step toward commercializing renewable ammonia. It examines the "value chains and business cases to produce CO2-free ammonia," analysing the potential for commercial deployment at three companies with existing sites in The Netherlands: Nuon at Eemshaven, Stedin at Goeree-Overflakkee, and OCI Nitrogen at Geleen. The project is called Power to Ammonia.

Industrial demonstrations of ammonia fuel in Japan
Article

Most of the ammonia energy projects I write about are in the research and development phase but, as I've said before, technology transfer from the academic lab to commercial deployment is moving swiftly - especially in Japan. Last week, Nikkei Asian Review published two articles outlining plans by major engineering and power firms to build utility-scale demonstrations using ammonia as a fuel for electricity generation. Both projects aim to reduce the carbon intensity of the Japanese electrical grid, incrementally but significantly, by displacing a portion of the fossil fuels with ammonia. The first project will generate power using an ammonia-coal mix, while the second will combine ammonia with natural gas.

Ammonia-Fueled Gas Turbine Power Generation
Article

Hideaki Kobayashi, professor at the Institute of Fluid Science at Tohoku University in Sendai, Japan, has developed the world’s first technology for direct combustion of ammonia in a gas turbine. The advance was made in cooperation with the National Institute of Advanced Industrial Science and Technology (AIST) under a program led by Norihiko Iki.

Ammonia Turbine Power Generation with Reduced NOx
Article

A common concern with ammonia fuel is that NOx emissions will be too high to control. However, in new research from Turkey, USA, and Japan, presented at this year's NH3 Fuel Conference in September 2016, two things became clear. First, NOx emissions can be reduced to less than 10ppm by employing good engineering design and exploiting the chemical properties of ammonia, which plays a dual role as both the fuel and the emissions-cleanup agent. Second, the deployment of ammonia-fueled turbines for power generation is not only feasible, but actively being developed, with demonstration units running today and improved demonstration projects currently in development.

Ammonia for Green Energy Storage and Beyond
Presentation

Siemens is participating in an all electric ammonia synthesis and energy storage system demonstration programme at Rutherford Appleton Laboratory, near Oxford. The demonstrator, which will run until December 2017, is supported by Innovate UK. Collaborators include the University of Oxford, Cardiff University and the Science & Technology Facilities Council.

Presentation

NH3 is a carbon-free fuel, so it has the potential to reduce CO2 emission from the power plant when used as a fuel. However, NH3 has combustion characteristics different from conventional hydrocarbon fuels. The N atom in the ammonia molecule causes high NOx emission through combustion reactions. To develop a gas-turbine combustor, which burns a combination of NH3 and natural gas with controlled emissions, combustion characteristics have been studied experimentally and numerically by using a swirl-burner, which is typically used in gas-turbines. Detailed exhaust gas compositions of the burner have been measured under atmospheric pressure and fuel lean conditions. As…

Presentation

Ammonia is expected not only as hydrogen energy carrier but also as carbon free fuel. For an industrial use of ammonia combustor, ammonia flame stabilized on a swirl combustor should be clarified. However, in order to realize an ammonia-fueled combustor, there are some issues to be solved, such as a difficulty of flame stabilization and reductions of NOx and ammonia emission. In this study, stabilization and emission characteristics of ammonia / air flames stabilized by a model swirl burner are investigated. The outer and inner diameters of the swirler are 24 mm and 14 mm, respectively, and the swirl number…

NOx emission analysis and flame stabilization of ammonia-hydrogen-air premixed flames
Presentation

Based on its well-known merits, ammonia has been gaining special attention as a potential renewable energy carrier which can be replaced in power generation units. One of the major challenges with ammonia as a fuel is NOx emission, which has a complex underlying chemical kinetics. In an earlier chemical kinetics study by the authors, NOx formation sensitivity was thoroughly studied in a wide range of combustion conditions [Nozari & Karabeyoğlu, J.Fuel 2015]. As the next step, premixed ammonia-hydrogen-air flames are studied experimentally in standard temperature and pressure condition. Effects of some major influential parameters on NOx emission levels are investigated:…

Power Generation and Flame Visualization of Micro Gas Turbine Firing Ammonia or Ammonia-Methane Mixture
Presentation

A demonstration test with the aim to show the potential of ammonia-fired power plant is planned using a micro gas turbine. 50kW class turbine system firing kerosene is selected as a base model. A standard combustor is replaced to a prototype combustor which enables a bi-fuel supply of kerosene and ammonia gas. Diffusion combustion is employed to the prototype combustor due to its flame stability. 44kW power generation was achieved by 100% heat from ammonia gas. Although NOx concentration in the exhaust gas of ammonia combustion exceeded 500ppm, NOx removal equipment reduced NOx concentration below 10ppm. Over 30kW power generation…