Site items in: Catalysts

3rd generation ammonia synthesis: new catalysts & production pathways
Article

We look at four new developments this week:

1. A team from DTU Energy and the Dalian Institute of Chemical Physics have uncovered a new class of alternative catalysts for mild condition ammonia synthesis. The ternary ruthenium complex hydrides Li4RuH6 and Ba2RuH6 avoid the energy-intensive pathway of nitrogen dissociation in a "synergistic" manner.

2. A team from the Korea Institute of Machinery and Materials reported a highly selective (95%) plasma ammonia synthesis method.

3. A team from Delft University of Technology has presented an present an "unconventional electrochemical design" that physically separates hydrogen and dinitrogen activation sites.

4. A team at the Max Planck Institute for Coal Research has demonstrated a new mechanochemical ammonia synthesis system that operates at room temperature and pressures as low as 1 bar.

New UK joint venture for lightweight, modular ammonia crackers
Article

Reaction Engines, IP Group, and the Science and Technology Facilities Council (STFC) launched a new joint venture this week at COP26 in Glasgow. The group will design and commercialise lightweight, modular ammonia cracking reactors to enable the use of ammonia in hard-to-decarbonise sectors, particularly aviation, shipping and off-grid power generation applications. The design will feature Reaction Engines’ heat exchanger technology developed for its SABRE™ air-breathing rocket engine. In this setup, exhaust heat is utilised to partially crack ammonia back into a fuel blend that "mimics" jet fuel. STFC will lead development of the cracking catalyst, with funding to be provided by IP Group.

Dynamic Analysis of Flex-gNH3 – a Green Ammonia Synthesis Process
Presentation

The future of a decarbonised ammonia production is seen as the alignment of the intermittent production of renewable energy, energy demands and ammonia process features. The current Haber-Bosch ammonia synthesis process can indeed be altered to enable green and sustainable ammonia production primarily being driven by renewable electricity. However, this will require to enhance current commercial Haber-Bosch (H-B) process flexibility with modifications to redefine the conventional H–B process with a new optimised control. The technical feasibility of green-ammonia (gNH3) process had been widely discussed and analysed focusing on its energy efficiency, the development of small-scale, distributed, modularised processes that can…

New materials for cracking catalysts
Article

Among the many challenges for cracking researchers is their choice of material to build their catalysts from. There is hope that cheaper, more readily-available materials will replace the Ruthenium-based catalysts that have dominated the field up to this point. This week two new pieces of research suggest a way forwards using alkali metal-based materials: Lithium and Calcium.

Ammonia Energy Live April: low-carbon innovation at Hazer Group
Article

This April we presented a new episode in our monthly webinar series: Ammonia Energy Live. Every month we’ll explore the wonderful world of ammonia energy and the role it will play in global decarbonisation - with an Australian twist. For this episode we welcomed Geoff Ward, CEO of the Hazer Group. Hazer has been steadily developing their novel methane pyrolysis technique in Western Australia with a new low-carbon hydrogen production facility to begin construction later this year. Geoff joined us to reflect on Hazer’s journey so far, familiarise our audience with their processes and give his thoughts on what needs to be put in place for similar decarbonisation projects to succeed. And - of course - we asked Geoff where ammonia fits into Hazer’s future plans! Geoff was interviewed by Andrew Dickson (Development Manager of the Asian Renewable Energy Hub at CWP Global), and Darren Jarvis (Vice President of Strategic Project Development at Incitec Pivot).

The Ammonia Academic Wrap:
Article

Welcome to the Ammonia Academic Wrap: a summary of all the latest papers, developments and emerging trends in the world of ammonia energy R&D. This week: "seamless" ammonia cracking tech from Northwestern, a new electrolysis catalyst, successful integration of ammonia synthesis and separation for improved efficiency, more research needed into transition metal catalysts for Haber Bosch, a novel, green power-to-ammonia to power system and a review on ammonia as a potential fuel.

Cracking Ammonia: panel wrap-up from the Ammonia Energy Conference
Article

When should we be cracking ammonia? How much should we be cracking? How could better cracking technologies open up new end uses? What are the critical challenges still to be overcome for cracking ammonia? On November 17, 2020, the Ammonia Energy Association (AEA) hosted a panel discussion moderated by Bill David from Science and Technology Facilities Council (STFC), as well as panel members Josh Makepeace from the University of Birmingham, Joe Beach from Starfire Energy, Gennadi Finkelshtain from GenCell Energy, Camel Makhloufi from ENGIE, and Michael Dolan from Fortescue as part of the recent Ammonia Energy Conference. All panelists agreed that cracking technology as it stands has a number of key areas to be optimised, particularly catalyst improvements and energy efficiency. But, successful demonstrations of modular, targeted cracking solutions are accelerating the conversation forward.

Ammonia cracking: when, how, and how much?
Presentation

Cracking ammonia to produce hydrogen underpins many of the fuel-based uses of ammonia, and as such is a lynchpin technology in the case for ammonia energy. While in many ways ammonia cracking is a mature technology, systems which are designed specifically for these applications are less common. In this presentation, a general overview of the potential roles of ammonia cracking in facilitating the use of ammonia for energy applications will be outlined, including a survey of established and emerging cracking and purification technologies. A forthcoming project to produce an AEA Ammonia Cracking Technical Paper will be introduced.

Starfire Energy's ammonia cracking and cracked gas purification technology
Presentation

Ammonia cracking is important for both combustion and fuel cell applications. Starfire Energy has verified that a blend of 70% ammonia + 30% cracked ammonia can burn well in a conventional natural gas burner with very low ammonia slip and acceptable NOx using a stoichiometric fuel-air mixture. A 10 MW turbine or internal combustion engine using such a blend will need about 1.44 tonnes of cracked ammonia per hour. Starfire Energy’s monolith-supported cracking catalyst may be ideally suited for this application. Fully cracked ammonia retains several thousand parts per million of ammonia due to thermodynamic limitations. Residual ammonia can damage…