Site items in: CCS Ammonia

NH3 vs. MCH: Energy Efficiency of Hydrogen Carriers Compared
Article

Volume 174 of the journal Energy, published on May 1, 2019, includes a paper by Shin’ya Obara, Professor in the Department of Electrical and Electronic Engineering at the Kitami Institute of Technology in Japan, that should be of interest to hydrogen advocates everywhere.  The paper, "Energy and exergy flows of a hydrogen supply chain with truck transportation of ammonia or methyl cyclohexane," concludes that a hydrogen supply chain based on ammonia has better energy efficiency than one based on methyl cyclohexane (MCH).

The Allam Cycle's Nexus with Ammonia
Article

8 Rivers Capital, the developer of “the Allam Cycle, the only technology that will enable the world to meet all of its climate targets without having to pay more for electricity,” unveiled plans in November 2018 for a “billion-dollar clean energy production site” in New Zealand whose outputs are slated to include low-carbon ammonia. That is a sentence with a lot of angles, and unpacking it will take some effort. So let’s start right in with the Allam Cycle.

Mission Possible: decarbonizing ammonia
Article

Mission Possible, a major report published at the end of 2018, concludes that decarbonizing ammonia production by 2050 is both technically and economically feasible. Among its 172 pages of assumptions, analysis, and explanation, Mission Possible examines production pathways and markets for green ammonia and its derivative green nitrogen fertilizers. It addresses the relatively straightforward issue of how to replace fossil feedstocks with renewable hydrogen for ammonia synthesis, as well as the more complex question of how to source or supplant the carbon dioxide molecules contained in urea, the most common nitrogen fertilizer. The report's economic conclusions will not surprise anyone involved in ammonia production or politics. Yes, green ammonia is currently more expensive than fossil ammonia, although it won't be for long. And no, "none of the increases in end-consumer prices are sufficiently large to be an argument against forceful policies to drive decarbonization."

Cost Evaluation Study on CO2-Free Ammonia and Coal Co-Fired Power Generation Integrated with Cost of CCS
Presentation

This study presents a cost estimation for electricity generated by CO2-free ammonia and coal co-firing. Regulation of CO2 emissions seems to be gaining pace due to the global warming issue so the introduction of CO2-free energy in power generation has become desirable. Ammonia is one of the potential energy carriers for power generation and development of ammonia combustion technology with low NOx emissions has been conducted in Japan. In order to investigate the feasibility of the introduction of CO2-free ammonia in Japan from both the technical and economic viewpoints, we estimated the ammonia supply chain cost from ammonia production integrated…

McKinsey report on industrial decarbonization examines pathways to green ammonia
Article

McKinsey & Company, the global consulting firm, recently published a report that analyzes the "Decarbonization of industrial sectors," with a focus on the four heaviest emitters: cement, steel, ammonia, and ethylene production. "We conclude that decarbonizing industry is technically possible ... We also identify the drivers of costs associated with decarbonization and the impact it will have on the broader energy system." Of course, "technical and economical hurdles arise," but the report provides valuable analysis of the economic levers that will be required.

Australia's Woodside Petroleum Considers Ammonia as a Hydrogen Carrier
Article

At last week’s Australian Petroleum Production and Exploration Association Conference, Woodside Petroleum’s chief executive officer Peter Coleman spoke about the “huge” opportunity in hydrogen energy that will develop for the company over the next 10-15 years.  Coleman sees the Japanese market for hydrogen as a promising destination for Woodside’s substantial reserves of natural gas, and indicated the company is evaluating alternative methods of hydrogen transport including as liquid H2, a liquid organic hydride, and ammonia.

Carbon Capture Set to Advance in the U.S.
Article

The United States Congress passed a measure on February 9 that could galvanize the production of low-carbon ammonia in the U.S.  The measure, included within the Bipartisan Budget Act of 2018, amends Section 45Q of the Internal Revenue Code, titled “Credit for Carbon Dioxide Sequestration”.  That section, originally adopted in 2008, created a framework of tax credits for carbon capture and sequestration.  45Q’s impact in the intervening years has been minimal, an outcome attributed by experts to the relatively low prices assigned to CO2 sequestration and the fact that tax credits would be allowed only for the first 75 million tonnes of sequestered CO2.  The new legislation increases the tax credit per tonne of CO2 placed in secure geological storage from $20 to $50, and for CO2 used for enhanced oil recovery from $10 to $35.  It eliminates the credits cap altogether.  With these changes, it now seems possible that low-carbon ammonia could find itself on an equal economic footing with “fossil” ammonia – and this could have consequences well beyond American agricultural markets.

Royal Society Releases Low-Carbon Hydrogen Briefing
Article

On February 8, the Royal Society released a policy briefing entitled “Options for producing low-carbon hydrogen at scale.”  The briefing evaluates the technical and economic aspects of hydrogen production methods and concludes that it is indeed feasible to produce low-carbon hydrogen at scale.  Part of that feasibility, the briefing says, could be based on the use of ammonia as an expedient for hydrogen transport and storage.

Japan, Saudi Arabia Explore Trade in Hydrogen, Ammonia
Article

Japan and Saudi Arabia are together exploring the possibility of extracting hydrogen from Saudi crude oil so that it can be transported to Japan in the form of ammonia. According to a synopsis of the planned effort, “one option for Japan’s material contribution to reducing greenhouse gas emissions [would be] a supply chain for carbon-free hydrogen and ammonia produced through CCS from Saudi Arabian fossil fuels.”  The synopsis emerged from a September 2017 workshop sponsored by Saudi Aramco and the Institute of Energy Economics, Japan (IEEJ).