Development of Catalytic Reactors and Solid Oxide Fuel Cells Systems for Utilization of Ammonia
"Ammonia for Power" is an open-access literature review that includes over 300 citations for recent and ongoing research in the use of ammonia in engines, fuel cells, and turbines, as well as providing references to decades of historical case studies and publications. The review, written by a consortium of ammonia energy experts from the University of Cardiff, University of Oxford, the UK's Science and Technology Facilities Council, and Tsinghua University in China, can be found in the November 2018 edition of Progress in Energy and Combustion Science.
On August 8th Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) gave a public demonstration of its newly developed ammonia-to-hydrogen fueling technology. In an interview this week with Ammonia Energy, Principal Research Scientist Michael Dolan reported that the demonstration drew more media attention than any event in CSIRO’s history – “by a comfortable margin.” The reporting sounded a set of celebratory themes, summed up by this headline from the Australian Broadcasting Corporation: Hydrogen fuel breakthrough in Queensland could fire up massive new export market. The stories, in other words, focused on what the demonstration could mean for fuel cell vehicles (FCVs) and the Australian economy. They did not penetrate to the heart of the matter which involved a practical development whose importance can be uniquely appreciated by the ammonia energy community.
GenCell Energy, the Israeli fuel cell manufacturer, has made two major announcements in the last month. In June, it unveiled its ammonia-fueled alkaline fuel cell system. In July, it announced its first commercial customer. Its A5 Off-Grid Power Solution is a "nano power plant that operates fully independent of the grid." The first phase of product trials, using ammonia as a fuel to provide uninterruptible power to cell phone masts, will begin in Kenya by the end of this year, and "product roll-out" is expected in the second half of 2019.
On June 28, Norwegian hydrogen company Nel ASA issued a press release announcing that the company will supply “448 electrolyzers and associated fueling equipment to Nikola Motor Company as part of Nikola’s development of a hydrogen station infrastructure in the U.S. for truck and passenger vehicles.” The Nikola-Nel arrangement is a globally significant step in the process of implementing a full-scale hydrogen energy economy. And although its approach for supplying green energy to hydrogen fueling stations does not involve ammonia, it seems likely it will ultimately help make the case for ammonia as an economically advantaged option.
On May 28 Sawafuji Electric Company issued a press release detailing advances made over the last year on the ammonia-to-hydrogen conversion technology it has been jointly developing with Gifu University. The main area of progress is the rate of hydrogen generation, but the key takeaway from the announcement is that Sawafuji has set a schedule that culminates in product commercialization in 2020.
Toyota Motor Corporation announced on April 25 the launch of an effort called the Chita City and Toyota City Renewable Energy-Use Low-Carbon Hydrogen Project. According to the company’s press release, the project is intended as a step toward “the realization of a hydrogen-based society spanning the entire region through mutual coordination and all-inclusive efforts.” For ammonia energy advocates, the announcement had two elements of particular significance. First is the clear indication that Toyota Motor Corporation is embracing ammonia as a hydrogen carrier – although not as a motor fuel. Second is the project’s stated intention to establish a “system in which Aichi Prefecture certifies low-carbon hydrogen objectively and fairly.”