Site items in: Electrochemical Ammonia

3rd generation ammonia synthesis: new catalysts & production pathways

We look at four new developments this week:

1. A team from DTU Energy and the Dalian Institute of Chemical Physics have uncovered a new class of alternative catalysts for mild condition ammonia synthesis. The ternary ruthenium complex hydrides Li4RuH6 and Ba2RuH6 avoid the energy-intensive pathway of nitrogen dissociation in a "synergistic" manner.

2. A team from the Korea Institute of Machinery and Materials reported a highly selective (95%) plasma ammonia synthesis method.

3. A team from Delft University of Technology has presented an present an "unconventional electrochemical design" that physically separates hydrogen and dinitrogen activation sites.

4. A team at the Max Planck Institute for Coal Research has demonstrated a new mechanochemical ammonia synthesis system that operates at room temperature and pressures as low as 1 bar.

High-productivity electrosynthesis of ammonia from dinitrogen

The so-called lithium redox-mediated nitrogen reduction reaction presents the only known process enabling genuine electrochemical conversion of N2 to ammonia. Notwithstanding the rapidly increasing investigative efforts, the commonly reported performances of the Li-mediated N2 electroreduction, viz. yield rate, current-to-ammonia (faradaic) efficiency and durability in operation, still pertain to the domain of academic research rather than practical development. Our most recent work focused on redesigning the key components of the electrolytic N2 reduction cell enabled breakthroughs in all the key metrics of the process. Specifically, we have introduced a stable proton shuttle based on the phosphonium cation that delivers protons to…

The Ammonia Wrap: EU ambitions, new tankers, and GW scale green ammonia in Denmark, Norway, and Chile

Welcome to the Ammonia Wrap: a summary of all the latest announcements, news items and publications about ammonia energy. In this week's wrap: HyDeal Ambition, new marine tankers, fuel forecasts & SOFC developments, a new technical briefing on power generation, UNSW leads research in P2X, GWs of green ammonia in Denmark, Norway and Chile, green ammonia in the Orkneys, new government focus on ammonia in South Africa, and India to make green ammonia production mandatory?

Alternatives to Ammonia Synthesis: An Electrochemical Haber-Bosch Process

Several alternatives to the existing process for ammonia synthesis, the Haber-Bosch Process, have been proposed in the past two decades, including the electrochemical synthesis in aqueous, molten salt or solid electrolyte cells. The present work reviews results of recent efforts (last 3 years) for the electrochemical synthesis of ammonia. An Electrochemical Haber-Bosch Process is also demonstrated. The proposed BaZrO3 – based protonic ceramic membrane reactor combines hydrogen production via the reactions of methane steam reforming and water-gas shift at the anode (Ni-composite) with ammonia synthesis from N 2 and protons (H + ) at the cathode (VN-Fe). Hydrogen extraction from…

Electrification of Ammonia Synthesis

Near-term prospects for decarbonized ammonia synthesis rely on conventional thermochemical Haber Bosch coupled to either electrochemical hydrogen production or methods of mitigating carbon emissions, such as carbon capture and storage. Thermochemical Haber Bosch requires high temperatures to achieve significant rates of ammonia synthesis and high pressures in order to achieve reasonable conversions of nitrogen and hydrogen to ammonia. Next-generation electrically-driven routes raise the prospect of using voltage in the place of temperature and pressure – an ambient pressure and room temperature route through which renewable electricity can be used to convert nitrogen and hydrogen to ammonia. Electrically-driven routes for nitrogen…

Whither Aqueous Electro-reduction of Nitrogen to Ammonia?

Electrochemical reduction of N 2 (NRR) is widely recognised as an alternative to the traditional Haber-Bosch production process for ammonia. The high-energy efficiency, low-cost variant of this process involves an aqueous electrolyte and there is now a substantial literature on this topic. However, though the challenges of NRR experiments have become better understood, the reported rates in these aqueous solution studies are often too low to be convincing that reduction of the highly unreactive N 2 molecule has actually been achieved. Unfortunately, there are many possible impurity sources that can interfere with robust measurements. In this presentation we will discuss…

Panel discussion on next-generation ammonia synthesis

This year’s Ammonia Energy Conference included a panel discussion on next-generation ammonia synthesis, moderated by Sarb Giddey (CSIRO, Australia), and featuring panelists Doug MacFarlane (Monash University, Australia), Karthish Manthiram (MIT, United States), and Michael Stoukides (Aristotle University of Thessaloniki, Greece). The panel discussed the direct fixation of nitrogen in the form of ammonia from water and air in a single electrochemical device, which is considered the “holy grail” of ammonia synthesis. During the panel, the participants gave their perspectives on the state of the art, and the obstacles and opportunities for progress.