Site items in: Electrolysis

Gigastack Phase 2 Receives Funding in the UK
Article

Earlier this week the United Kingdom’s Department for Business, Energy & Industrial Strategy (BEIS) announced that a group led by ITM Power has been awarded GBP 7.5 million (USD $9.7 million) for the second phase of a renewable hydrogen project dubbed “Gigastack.” According to the BEIS announcement, “Gigastack will demonstrate the delivery of bulk, low-cost and zero-carbon hydrogen through ITM Power’s gigawatt scale polymer electrolyte membrane (PEM) electrolysers . . .” with the goal of “dramatically reduc[ing] the cost of electrolytic hydrogen.” The hydrogen produced will be used for petroleum refining, although the project partners have their eyes on opportunities that go well beyond desulfurization of oil.

Gigawatt-scale electrolyzer manufacturing and deployment
Article

ANNUAL REVIEW 2019: Electrolyzers have featured heavily at this year's Ammonia Energy Conference, which ended today. How much can innovation increase efficiency? How far can volume manufacturing drive down capex? How much could process integration with Haber-Bosch deliver improved ammonia production? How realistically can new, sophisticated strategies optimize variable and baseload power inputs? These technical questions are all important, but none defines profitability. While progress is being made on all these fronts of research and development, major industrial projects are still moving forward.

Energy Storage through Electrochemical Ammonia Synthesis Using Proton-Conducting Ceramics
Presentation

In this presentation, we provide an overview of an ambitious project to store renewable energy through electrochemical synthesis of ammonia. The joint project between the Colorado School of Mines (Golden, CO) and FuelCell Energy, Inc. (Danbury, CT) is supported through the U.S. Department of Energy ARPA-E ‘REFUEL’ program. The research and development team seeks to harness the unique properties of proton-conducting ceramics to activate chemical and electrochemical reactions for efficient and cost-effective synthesis of ammonia. The system concept is shown in Figure 1; renewable electricity is used to drive electrolysis of the H2O feedstock to form hydrogen. This electrochemically produced…

Solid Oxide Technology for Ammonia Production and Use
Presentation

The presentation will outline a 4 million € project funded by the Danish Energy Agency. The project is coordinated by Haldor Topsøe A/S and the partners are Vestas Wind Power, Ørsted, Energinet, Equinor, DTU Energy Conversion, and Aarhus University. The purpose of the project is to demonstrate a novel process for generation of ammonia synthesis gas without an air separation unit by means of Solid Oxide Electrolyzer Cells as well as using ammonia as a fuel for Solid Oxide Fuel Cells. The synthesis gas generation plant will be a 50 kW unit. The SOFC unit test will be carried out…

Israeli Group Develops New Electrolysis Technology
Article

Last month a group of researchers from the Technion Israel Institute of Technology published a paper, “Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting,” in the journal Nature Energy.  The key word in the title is “efficient.”  In a September 15 Technion press release, the researchers state that their technology “facilitates an unprecedented energetic efficiency of 98.7% in the production of hydrogen from water.”  Applied to the appropriate use case, the technology could lead to a major improvement in green ammonia’s ability to compete with brown ammonia and other low-carbon energy carriers.

Yara and Nel collaborate to reduce electrolyzer costs; announce green ammonia pilot in Norway by 2022
Article

This week, two Norwegian companies, fertilizer producer Yara and electrolyzer manufacturer Nel, announced an agreement to test Nel's "next generation" alkaline electrolyzer at an ammonia production site. The parties expect to begin operating a 5 MW prototype in 2022, feeding green hydrogen directly into Yara's 500,000 ton per year ammonia plant at Porsgrunn.

High efficiency ammonia synthesis systems
Presentation

Haldor Topsøe A/S has developed a new technology for generation of ammonia synthesis gas via Solid Oxide electrolysis, which eliminates an air separation unit and has 20-30 % lower power consumption than traditional electrolysis based processes. The concept will be demonstrated in a 50 kW unit along with test of ammonia as fuel for Solid Oxide Fuel Cells. The partners in the project are: Vestas, Ørsted, Energinet, Aarhus University and DTU, and it is sponsored by the Danish Energy Development Programme.

New Video Summarizes SIP Energy Carriers Accomplishments
Article

ANNOUNCEMENT: The Japanese Government’s Cabinet Office and the Japan Science and Technology Agency have released an English-language video that summarizes the accomplishments of the Cross-Ministerial Strategic Innovation Promotion Program’s Energy Carriers initiative.  The release coincides with the end-of-March conclusion of Energy Carriers’ work, and anticipates this month’s formal activation of the Green Ammonia Consortium.

Green ammonia: Haldor Topsoe's solid oxide electrolyzer
Article

Haldor Topsoe has greatly improved the near-term prospects for green ammonia by announcing a demonstration of its next-generation ammonia synthesis plant. This new technology uses a solid oxide electrolysis cell to make synthesis gas (hydrogen and nitrogen), which feeds Haldor Topsoe's existing technology: the Haber-Bosch plant. The product is ammonia, made from air, water, and renewable electricity. The "SOC4NH3" project was recently awarded funds from the Danish Energy Agency, allowing Haldor Topsoe to demonstrate the system with its academic partners, and to deliver a feasibility study for a small industrial-scale green ammonia pilot plant, which it hopes to build by 2025. There are two dimensions to this technology that make it so important: its credibility and its efficiency.