Site items in: Energy Carrier

South Korea to Launch Major Fuel Cell Vehicle Initiative
Article

Where will fuel cell vehicles (FCVs) first achieve critical mass?  Japan and California spring to mind as likely jurisdictions.  South Korea not so much.  That situation could change, though, with recent announcements from the Ministry of Trade, Industry, and Energy (MTIE) in Seoul.  In fact, planned public and private sector investments could push South Korea to the front of the FCV pack. But while hydrogen-related activity of this nature can create opportunities for ammonia energy, the question always looms: are the key players in the implementing jurisdiction aware of the enabling roles ammonia can play?  Hyundai is unquestionably a key player in South Korea’s FCV landscape, and, courtesy of its support for the Australian ammonia-to-hydrogen fueling demonstration that will kick off in August, Hyundai is certainly aware, and could even become a champion, of ammonia-based FCV fueling.

On the Ground in Japan: 5th Basic Energy Plan, LH2 Investment
Article

Japan, widely recognized as a global leader in the development and implementation of ammonia energy, is a fascinating case study for advocates seeking a template for progress.  But, as Ammonia Energy has documented in numerous posts over the last two years, even in Japan the path is neither linear, smooth, nor preordained.  Two recent developments, one in the public sector and one in the private, illustrate anew the complexity of the evolutionary track the country is negotiating as it strives to create a sustainable energy economy.

Toyota, 7-Eleven to Cooperate on Low-Carbon Convenience Stores
Article

Last month, one Ammonia Energy post discussed Toyota’s participation in a Low-Carbon Hydrogen Project in its home prefecture -- including implicit support for ammonia as a hydrogen carrier.  Another post discussed Japanese manufacturer IHI’s plans to commercialize a small-scale combined heat and power system (micro CHP) based on direct ammonia solid oxide fuel cell technology.  Now, according to a June 6 Toyota Motor Corporation press release, Toyota and micro CHP have converged. The announcement served as the unveiling of a “joint project” by Toyota and the convenience store chain 7-Eleven to develop “next-generation convenience stores aiming to considerably reduce CO2 emissions.”  The two companies initially agreed to cooperate in August 2017 on "considerations toward energy conservation and carbon dioxide emission reduction in store distribution and operation.”

Australia's Woodside Petroleum Considers Ammonia as a Hydrogen Carrier
Article

At last week’s Australian Petroleum Production and Exploration Association Conference, Woodside Petroleum’s chief executive officer Peter Coleman spoke about the “huge” opportunity in hydrogen energy that will develop for the company over the next 10-15 years.  Coleman sees the Japanese market for hydrogen as a promising destination for Woodside’s substantial reserves of natural gas, and indicated the company is evaluating alternative methods of hydrogen transport including as liquid H2, a liquid organic hydride, and ammonia.

Toyota Supports H2 Society Roll-Out on Its Home Turf; Sees Role for NH3
Article

Toyota Motor Corporation announced on April 25 the launch of an effort called the Chita City and Toyota City Renewable Energy-Use Low-Carbon Hydrogen Project.  According to the company’s press release, the project is intended as a step toward “the realization of a hydrogen-based society spanning the entire region through mutual coordination and all-inclusive efforts.”  For ammonia energy advocates, the announcement had two elements of particular significance. First is the clear indication that Toyota Motor Corporation is embracing ammonia as a hydrogen carrier – although not as a motor fuel.  Second is the project’s stated intention to establish a “system in which Aichi Prefecture certifies low-carbon hydrogen objectively and fairly.”

Ammonia-to-Hydrogen Seen for Electricity Generation
Article

Approximately 40% of the world’s energy budget is consumed in the generation of electricity.  This is by far the largest use of primary energy across major energy-consuming sectors (transportation, industry, etc.).  What role ammonia will play in the electricity sector is therefore a question of considerable importance for the sustainable energy system of the future.  One concept currently on the table is power-to-ammonia as a means of electricity storage, whereby electricity is used to produce hydrogen and the hydrogen is reacted with nitrogen to produce ammonia.  The other, mirror-image, concept is to use ammonia, or hydrogen derived from ammonia, as a fuel that can be turned into electricity. This “back-end” use case is the focus of recent announcements from Mitsubishi Hitachi Power Systems (MHPS).  According to an April 5 story in the Nikkei Sangyo, MHPS plans to put a “hydrogen-dedicated gas turbine . . . into practical use by 2030.”  The company also stated that it has “started developing technology to extract hydrogen from ammonia,” citing ammonia’s ease “to store and transport.”

Battolyser B.V. Formed in the Netherlands
Article

Proton Ventures and Delft University of Technology (TU Delft), both of the Netherlands, announced in early February the formation of a new company, Battolyser B.V.  The company’s initial goal is to build and demonstrate a pilot version of the eponymous technology that stores electricity and produces hydrogen.  Hans Vrijenhoef, who will direct the new company, indicated that a fully realized system would include an ammonia production train so that the hydrogen could be stored and transported at low cost.  Vrijenhoef is already the Director of Proton Ventures B.V., a member of the NH3 Fuel Association’s Global Federation Advisory Board, and the originator of the NH3 Event power-to-ammonia conference.

Japan, Saudi Arabia Explore Trade in Hydrogen, Ammonia
Article

Japan and Saudi Arabia are together exploring the possibility of extracting hydrogen from Saudi crude oil so that it can be transported to Japan in the form of ammonia. According to a synopsis of the planned effort, “one option for Japan’s material contribution to reducing greenhouse gas emissions [would be] a supply chain for carbon-free hydrogen and ammonia produced through CCS from Saudi Arabian fossil fuels.”  The synopsis emerged from a September 2017 workshop sponsored by Saudi Aramco and the Institute of Energy Economics, Japan (IEEJ). 

Australian Renewable Energy Agency Issues H2 Fuel Carriers RFP
Article

One of Ammonia Energy’s “top ten” stories of 2017 described Australia’s early steps toward export of renewable hydrogen in the form of green ammonia.  The story said that “Agencies such as the Australian Renewable Energy Agency (ARENA) made it clear during the year that the country intends to build on [its historical] position” as a supplier of fossil energy to countries such as Japan.  ARENA took a tangible step in this direction on December 20, 2017 with the release of a Request for Proposal for a AUD$20 million (USD$16 million) renewable hydrogen R&D funding program.  Included in the scope, per ARENA’s 2017 Investment Plan, could be “demonstration of renewable production methods for transportable energy storage options (such as hydrogen or ammonia).”

Ammonia Positioned for Key Role in Japan's New Hydrogen Strategy
Article

The Japanese government has approved an updated hydrogen strategy which appears to give ammonia the inside track in the race against liquid hydrogen (LH2) and liquid organic hydride (LOH) energy carrier systems. The announcement was made on December 26, 2017, by the Agency of Natural Resources and Energy (ANRE), the lead agency on energy policy within the Ministry of Energy, Trade, and Industry (METI). Perhaps the most important indicator of ammonia’s positioning as the lead energy carrier can be seen in the development timelines that are assigned to each energy carrier. The Strategy calls for “CO2-free ammonia” to come into use “by the mid-2020s.”