Demonstration of CO2-Free Ammonia Synthesis Using Renewable Energy-Generated Hydrogen
In the last 12 months ... Green ammonia pilot plants began operations in the UK and Japan, and new demonstration plants were announced in Australia, Denmark, Morocco, and the Netherlands (more, yet to be announced, are in development). Fertilizer company CEOs spoke about how green ammonia fits their corporate strategy. And all four of the global licensors of ammonia technology made it abundantly clear that they are ready and willing to build your green ammonia plant, today.
NH3FA.Oz, the Australian chapter of the NH3 Fuel Association, held a meeting on August 30 in approximate observance of its one-year anniversary. John Mott, one of the founders of NH3FA.Oz and a member of the NH3 Fuel Association’s Advisory Board, reported that more than two dozen stakeholders from academia, industry, and the public sector participated. The meeting came on the heels of the rapid-fire release of three significant reports, and preceded by a week the announcement of an important set of research grants. The meeting, the reports, and the announcement all made clear that ammonia is fast becoming a fixture in Australian energy policy.
Another week, another green ammonia pilot plant. Siemens Gamesa, the world's largest wind turbine manufacturer (by installed capacity), has announced a partnership with local climate innovation fund Energifonden Skive to investigate the production of ammonia from wind power at an eco-industrial hub in Denmark's "Green Tech Valley." The announcement describes "an agreement to jointly explore eco-friendly ammonia production as a way to store surplus electricity from wind turbines. The goal: a pilot plant at GreenLab Skive."
Last week, OCP Group announced plans to develop green hydrogen and green ammonia as sustainable raw materials for use in fertilizer production. This includes building pilot plants in both Germany, already under construction, and Morocco, yet to begin construction, as well as "the possible establishment of an African Institute for Solar Ammonia."
McKinsey & Company, the global consulting firm, recently published a report that analyzes the "Decarbonization of industrial sectors," with a focus on the four heaviest emitters: cement, steel, ammonia, and ethylene production. "We conclude that decarbonizing industry is technically possible ... We also identify the drivers of costs associated with decarbonization and the impact it will have on the broader energy system." Of course, "technical and economical hurdles arise," but the report provides valuable analysis of the economic levers that will be required.
In June, ThyssenKrupp announced the launch of its technology for "advanced water electrolysis," which produces carbon-free hydrogen from renewable electricity and water. This "technology enables economical industrial-scale hydrogen plants for energy storage and the production of green chemicals." Two weeks later, in early July, ThyssenKrupp announced that it was moving forward with a demonstration plant in Port Lincoln, South Australia, which had been proposed earlier this year. This will be "one of the first ever commercial plants to produce CO2-free 'green' ammonia from intermittent renewable resources." The German conglomerate is one of the four major ammonia technology licensors, so its actions in the sustainable ammonia space are globally significant.
On July 13, Science magazine, the flagship publication of the American Association for the Advancement of Science (AAAS), published a 2,800-word “feature article" on ammonia energy. The article, headlined, “Liquid sunshine: Ammonia made from sun, air, and water could turn Australia into a renewable energy superpower,” is uniformly open-minded and upbeat. Its opening section ends with a quote from Monash University Professor of Physics and Chemistry Doug MacFarlane; “’Liquid ammonia is liquid energy,’ he says. ‘It's the sustainable technology we need.’” MacFarlane helped launch the Australian chapter of the NH3 Fuel Association.