Site items in: Renewable Hydrogen

Toyota, 7-Eleven to Cooperate on Low-Carbon Convenience Stores
Article

Last month, one Ammonia Energy post discussed Toyota’s participation in a Low-Carbon Hydrogen Project in its home prefecture -- including implicit support for ammonia as a hydrogen carrier.  Another post discussed Japanese manufacturer IHI’s plans to commercialize a small-scale combined heat and power system (micro CHP) based on direct ammonia solid oxide fuel cell technology.  Now, according to a June 6 Toyota Motor Corporation press release, Toyota and micro CHP have converged. The announcement served as the unveiling of a “joint project” by Toyota and the convenience store chain 7-Eleven to develop “next-generation convenience stores aiming to considerably reduce CO2 emissions.”  The two companies initially agreed to cooperate in August 2017 on "considerations toward energy conservation and carbon dioxide emission reduction in store distribution and operation.”

Australia's Woodside Petroleum Considers Ammonia as a Hydrogen Carrier
Article

At last week’s Australian Petroleum Production and Exploration Association Conference, Woodside Petroleum’s chief executive officer Peter Coleman spoke about the “huge” opportunity in hydrogen energy that will develop for the company over the next 10-15 years.  Coleman sees the Japanese market for hydrogen as a promising destination for Woodside’s substantial reserves of natural gas, and indicated the company is evaluating alternative methods of hydrogen transport including as liquid H2, a liquid organic hydride, and ammonia.

Royal Society Releases Low-Carbon Hydrogen Briefing
Article

On February 8, the Royal Society released a policy briefing entitled “Options for producing low-carbon hydrogen at scale.”  The briefing evaluates the technical and economic aspects of hydrogen production methods and concludes that it is indeed feasible to produce low-carbon hydrogen at scale.  Part of that feasibility, the briefing says, could be based on the use of ammonia as an expedient for hydrogen transport and storage.

Renewable ammonia demonstration plant announced in South Australia
Article

This week, the government of South Australia announced a "globally-­significant demonstrator project," to be built by the hydrogen infrastructure company Hydrogen Utility (H2U). The renewable hydrogen power plant will cost AUD$117.5 million ($95 million USD), and will be built by ThyssenKrupp Industrial Solutions with construction beginning in 2019. The plant will comprise a 15 MW electrolyzer system, to produce the hydrogen, and two technologies for converting the hydrogen back into electricity: a 10MW gas turbine and 5MW fuel cell. The plant will also include a small but significant ammonia plant, making it "among the first ever commercial facilities to produce distributed ammonia from intermittent renewable resources."

Australian Renewable Energy Agency Issues H2 Fuel Carriers RFP
Article

One of Ammonia Energy’s “top ten” stories of 2017 described Australia’s early steps toward export of renewable hydrogen in the form of green ammonia.  The story said that “Agencies such as the Australian Renewable Energy Agency (ARENA) made it clear during the year that the country intends to build on [its historical] position” as a supplier of fossil energy to countries such as Japan.  ARENA took a tangible step in this direction on December 20, 2017 with the release of a Request for Proposal for a AUD$20 million (USD$16 million) renewable hydrogen R&D funding program.  Included in the scope, per ARENA’s 2017 Investment Plan, could be “demonstration of renewable production methods for transportable energy storage options (such as hydrogen or ammonia).”

Renewable Energy for Industry: IEA's vision for green ammonia as feedstock, fuel, and energy trade
Article

This morning in Beijing, China, the International Energy Agency (IEA) launched a major new report with a compelling vision for ammonia's role as a "hydrogen-rich chemical" in a low-carbon economy. Green ammonia would be used by industry "as feedstock, process agent, and fuel," and its production from electrolytic hydrogen would spur the commercial deployment of "several terawatts" of new renewable power. These terawatts would be for industrial markets, additional to all prior estimates of renewable deployment required to serve electricity markets. At this scale, renewable ammonia would, by merit of its ease of storage and transport, enable renewable energy trading across continents. The IEA's report, Renewable Energy for Industry, will be highlighted later this month at the COP23 in Bonn, Germany, and is available now from the IEA's website.

Ammonia Renewable Energy Fuel Systems at Continental Scale
Presentation

We must soon “run the world on renewables” but cannot, and should not try to, accomplish this entirely with electricity transmission. New, abundant, low-cost, unconventional natural gas supplies are finite; burning adds CO2 to Earth’s atmosphere. Humanity’s goal must be nothing less than: Transforming the world’s largest industry from ~80% fossil to ~100% renewable, CO2-emission-free energy sources as quickly as we prudently and profitably can. We should now carefully consider using pipeline networks, rather than the electricity grid, for solving the three salient technical problems of renewable energy (RE) at lower cost: Transmission: from diverse, stranded, remote, rich RE resources…

Renewable Hydrogen in Fukushima and a Bridge to the Future
Article

On August 1, 2017 the Japan Government’s New Energy and Industrial Technology Development Organization (NEDO) announced that it will proceed with funding for the construction of a hydrogen production plant in Namie Township, about ten kilometers from the site of the Fukushima nuclear disaster.  The project’s budget is not mentioned, but the installation is projected to be “the largest scale in the world” -- in other words, a real bridge to the future and not a demonstration project.  The project no doubt has a variety of motivations, not least the symbolic value of a renewable hydrogen plant rising in the shadow of the Fukushima Daiichi nuclear station.  In economic terms, though, it appears to be a dead end.  This is unfortunate because a similarly conceived project based on ammonia could be a true bridge-building step that aligns with leading-edge developments elsewhere in the world.

Yara: solar ammonia pilot plant, for start-up in 2019
Article

Yara, the world's biggest producer of ammonia, has announced that it intends to build a demonstration plant to produce ammonia using solar power, near its existing world-scale plant in the Pilbara, in Western Australia. It expects to complete the feasibility study this year. Next year, in 2018, Yara hopes to finish the engineering design and begin construction so that it can complete the project and begin production of carbon-free ammonia in 2019.