Site items in: Solar Ammonia

Science Publishes Feature Article on Ammonia Energy
Article

On July 13, Science magazine, the flagship publication of the American Association for the Advancement of Science (AAAS), published a 2,800-word “feature article" on ammonia energy. The article, headlined, “Liquid sunshine: Ammonia made from sun, air, and water could turn Australia into a renewable energy superpower,” is uniformly open-minded and upbeat.  Its opening section ends with a quote from Monash University Professor of Physics and Chemistry Doug MacFarlane; “’Liquid ammonia is liquid energy,’ he says. ‘It's the sustainable technology we need.’” MacFarlane helped launch the Australian chapter of the NH3 Fuel Association.

Future Ammonia Technologies: Plasma, Membrane, Redox
Article

I wrote recently about two pathways for ammonia production technology development: improvements on Haber-Bosch, or electrochemical synthesis. Last week, I covered some of these Haber-Bosch improvements; next week, I'll write about electrochemical processes. This week, I want to write about some innovations that don't fit this two-way categorization: they don't use electrochemistry and they don't build upon the Haber-Bosch process, and that might be the only thing that links them.

Renewable Energy for Industry: IEA's vision for green ammonia as feedstock, fuel, and energy trade
Article

This morning in Beijing, China, the International Energy Agency (IEA) launched a major new report with a compelling vision for ammonia's role as a "hydrogen-rich chemical" in a low-carbon economy. Green ammonia would be used by industry "as feedstock, process agent, and fuel," and its production from electrolytic hydrogen would spur the commercial deployment of "several terawatts" of new renewable power. These terawatts would be for industrial markets, additional to all prior estimates of renewable deployment required to serve electricity markets. At this scale, renewable ammonia would, by merit of its ease of storage and transport, enable renewable energy trading across continents. The IEA's report, Renewable Energy for Industry, will be highlighted later this month at the COP23 in Bonn, Germany, and is available now from the IEA's website.

Screening Binary Redox Pairs for Solar Thermochemical Ammonia Synthesis Using Machine Learned Predictions of Gibbs Formation Energies at Finite Temperatures
Presentation

Solar thermochemical ammonia synthesis (STAS) is a reduction/oxidation (redox) cycle which enables the production of ammonia (NH3) from air, water, and concentrated sunlight. In this process, a metal nitride (MN) is oxidized by steam to produce a metal oxide (MO) and NH3; the resulting MO is reduced at high temperature (driven by concentrated solar radiation) and subsequently used to reduce atmospheric nitrogen (N2) and reform the MN and restart the NH3 synthesis cycle. The identification of optimal redox pairs (MO/MN) for this process has been historically limited by the lack of thermochemical data (i.e., Gibbs formation energies at finite temperatures)…

Our Iowa Renewable Hydrogen and Ammonia Generation System
Presentation

The presentation will summarize the development of the demonstration size renewable fuel and fertilizer system on my Iowa farm. Solar power, water, and air are used to make hydrogen and ammonia fuel used to power a modified John Deere 7810 tractor. The ammonia can also be used to fertilize corn cropland. The development of the ammonia reactor will be described and its performance discussed. There are no carbon emissions in either the generation or consumption of the hydrogen and ammonia.

Comprehensive Evaluation of NH3 Production and Utilization Options for Clean Energy Applications
Presentation

The project proposes a comprehensive investigation on the analysis, assessment and optimization of ammonia synthesis processes under renewable energy portfolio, including low-cost hydro, wind, solar, geothermal, ocean, biomass, etc. Furthermore, ammonia production via hydrocarbon decomposition, which will be investigated in the study, is a promising option to utilize fossil fuels in a cleaner and environmentally benign way. Case studies for various locations and applications in communities, cities and provinces to develop and implement clean solutions are performed. The objectives of this project include energy and exergy analyses, environmental impact assessments, thermo-economic analyses and evaluations, optimization studies, experimental investigation, scalability and…

The Dawn of Bio-Ammonia
Article

In the last 12 months ... Bio-engineering has set its sights on ammonia. If we could deliver ammonia-emitting microbes to the soil we might make ammonia fertilizer obsolete; on the other hand, if we could farm them, we might establish ammonia as a new, carbon-free algal biofuel.

Yara: solar ammonia pilot plant, for start-up in 2019
Article

Yara, the world's biggest producer of ammonia, has announced that it intends to build a demonstration plant to produce ammonia using solar power, near its existing world-scale plant in the Pilbara, in Western Australia. It expects to complete the feasibility study this year. Next year, in 2018, Yara hopes to finish the engineering design and begin construction so that it can complete the project and begin production of carbon-free ammonia in 2019.

Next-generation ammonia tech: biohybrid nanoparticles
Article

Sustainable ammonia can be produced today: doing so would use electrolyzers to make hydrogen to feed the traditional Haber-Bosch process. In a very few years, new technologies will skip this hydrogen production phase altogether and make ammonia directly from renewable power in an electrochemical cell. Further down the pipeline, next generation technologies will mimic nature, specifically the nitrogenase enzyme, which produces ammonia naturally. One of these next generation technologies is currently producing impressive results at the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL).