Site items in: Stationary Power

Progress in Ammonia Combustion Catalysts
Article

On February 14 the Journal of Physical Chemistry published a paper entitled “Local Structures and Catalytic Ammonia Combustion Properties of Copper Oxides and Silver Supported on Aluminum Oxides.” The paper, by Satoshi Hinokuma of Kumamoto University in Kumamoto, Japan and four co-authors, reports on a catalyst system that is well adapted for use in ammonia energy applications.

Ammonia for energy storage: economic and technical analysis
Article

Developers around the world are looking at using ammonia as a form of energy storage, essentially turning an ammonia storage tank into a very large chemical battery. In the UK, Siemens is building an "all electric ammonia synthesis and energy storage system." In the Netherlands, Nuon is studying the feasibility of using Power-to-Ammonia "to convert high amounts of excess renewable power into ammonia, store it and burn it when renewable power supply is insufficient." While results from Siemens could be available in 2018, it might be 2021 before we see results from Nuon, whose "demonstration facility is planned to be completed in five years." But, while we wait for these real-world industrial data, the academic literature has just been updated with a significant new study on the design and performance of a grid-scale ammonia energy storage system.

Sturman Industries' Dual-Fuel Ammonia Engine
Article

Eddie Sturman, noted inventor and co-founder of Sturman Industries, has been developing ammonia internal-combustion-engine (ICE) technology for several years – "at least six, maybe more." At the 2016 NH3 Fuel Conference, he provided the most in-depth look so far at the results of Sturman Industries' R&D program. Specifically, his talk featured a dual-fuel compression ignition engine powered by a combination of diesel fuel and ammonia.

Piloting a Combined Heat and Power / Distributed Generation System, Powered by Carbon-Free, Renewable-Based Anhydrous Ammonia
Presentation

UCLA-STPP is an interdisciplinary science / policy research unit, enjoining faculty in schools of engineering, public health, law, business, and medicine. The two-part mission of UCLA-STPP is to: (1) evaluate the viability of safer, cleaner, greener, more sustainable substitutes for existing hazardous services, processes, systems, and/or technologies, and (2) employ diffusion analysis to identify institutional, policy, and regulatory barriers to the adoption of viable safer substitutes and prescribe policy changes to overcome key barriers. UCLA-STPP has taken leadership in developing and institutionalizing “alternatives analysis” as policy/regulatory tool as a method to evaluate and identify safer, cleaner, greener, more sustainable substitutes.…

Micro Gas Turbine Operation with Kerosene and Ammonia
Presentation

A demonstration test with the aim to show the potential of ammonia-fired power plant is planned using a micro gas turbine. 50kW class turbine system firing kerosene is selected as a base model. A standard combustor is replaced with a prototype combustor which enables a bi-fuel supply of kerosene and ammonia gas. Diffusion combustion is employed to the prototype combustor due to its flame stability. Demonstration test of co-firing of kerosene and ammonia gas was achieved to check the functionality of the each component of the micro gas turbine. The gas turbine started firing kerosene and increased its electric power…

Project Alkammonia: Ammonia-fed Alkaline Fuel Cells
Article

Following last year’s field trials of Diverse Energy’s PowerCube technology in Africa (and AFC Energy’s subsequent acquisition of assets from Diverse), an EU-funded project to commercialize ammonia-fed fuel cells for stationary power generation continues to gather momentum under the title “Project Alkammonia".