Site items in: Articles

CSIRO Demonstrates Ammonia-to-Hydrogen Fueling System
Article

On August 8th Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) gave a public demonstration of its newly developed ammonia-to-hydrogen fueling technology.  In an interview this week with Ammonia Energy, Principal Research Scientist Michael Dolan reported that the demonstration drew more media attention than any event in CSIRO’s history – “by a comfortable margin.”  The reporting sounded a set of celebratory themes, summed up by this headline from the Australian Broadcasting Corporation: Hydrogen fuel breakthrough in Queensland could fire up massive new export market.  The stories, in other words, focused on what the demonstration could mean for fuel cell vehicles (FCVs) and the Australian economy.  They did not penetrate to the heart of the matter which involved a practical development whose importance can be uniquely appreciated by the ammonia energy community.

McKinsey report on industrial decarbonization examines pathways to green ammonia
Article

McKinsey & Company, the global consulting firm, recently published a report that analyzes the "Decarbonization of industrial sectors," with a focus on the four heaviest emitters: cement, steel, ammonia, and ethylene production. "We conclude that decarbonizing industry is technically possible ... We also identify the drivers of costs associated with decarbonization and the impact it will have on the broader energy system." Of course, "technical and economical hurdles arise," but the report provides valuable analysis of the economic levers that will be required.

Hydrogen Plans Appear, But Where Is Ammonia?
Article

The concept of hydrogen as the centerpiece of a sustainable energy economy continues to gain momentum.  It is the focus of recent reports from France and the United Kingdom that consider the topic from two distinct but surprisingly convergent national perspectives.  And while ammonia is not given a role in either treatment, this seems to be because the authors' thinking has not arrived at a level of detail where ammonia's virtues become salient.

ThyssenKrupp's
Article

In June, ThyssenKrupp announced the launch of its technology for "advanced water electrolysis," which produces carbon-free hydrogen from renewable electricity and water. This "technology enables economical industrial-scale hydrogen plants for energy storage and the production of green chemicals." Two weeks later, in early July, ThyssenKrupp announced that it was moving forward with a demonstration plant in Port Lincoln, South Australia, which had been proposed earlier this year. This will be "one of the first ever commercial plants to produce CO2-free 'green' ammonia from intermittent renewable resources." The German conglomerate is one of the four major ammonia technology licensors, so its actions in the sustainable ammonia space are globally significant.

South Korea to Launch Major Fuel Cell Vehicle Initiative
Article

Where will fuel cell vehicles (FCVs) first achieve critical mass?  Japan and California spring to mind as likely jurisdictions.  South Korea not so much.  That situation could change, though, with recent announcements from the Ministry of Trade, Industry, and Energy (MTIE) in Seoul.  In fact, planned public and private sector investments could push South Korea to the front of the FCV pack. But while hydrogen-related activity of this nature can create opportunities for ammonia energy, the question always looms: are the key players in the implementing jurisdiction aware of the enabling roles ammonia can play?  Hyundai is unquestionably a key player in South Korea’s FCV landscape, and, courtesy of its support for the Australian ammonia-to-hydrogen fueling demonstration that will kick off in August, Hyundai is certainly aware, and could even become a champion, of ammonia-based FCV fueling.

Ammonia as a Renewable Fuel for the Maritime Industry
Article

Last week, I wrote about a crucial new report that discusses four fuel technologies: batteries, hydrogen, ammonia, and nuclear. These could reduce the shipping sector's emissions in line with targets set in the IMO's Initial GHG Strategy. The report, Reducing CO2 Emissions to Zero, concludes that "all industry stakeholders ... need to get on with the job of developing zero CO2 fuels." This call to action should be consequential: it comes from the International Chamber of Shipping, an influential industry group that represents "more than 80% of the world merchant fleet." This week, I provide an example of the kind of research required, with an update on a project that aims to demonstrate "the technical feasibility and cost effectiveness of an ammonia tanker fueled by its own cargo." Although this project is still in its early days, I want to highlight three aspects that I believe will be crucial to its success. First, the work is being done by a consortium, bringing together many industry stakeholders, each with its own expertise and commercial interests. Second, the scope of research extends beyond conventional engine configurations to include not just new fuels but also new technology combinations; in other words, rather than assess new fuels in old engines, it aims to develop optimized propulsion designs for zero-emission fuels. And, third, its consideration of ammonia as a fuel begins with a comprehensive safety analysis.

Science Publishes Feature Article on Ammonia Energy
Article

On July 13, Science magazine, the flagship publication of the American Association for the Advancement of Science (AAAS), published a 2,800-word “feature article" on ammonia energy. The article, headlined, “Liquid sunshine: Ammonia made from sun, air, and water could turn Australia into a renewable energy superpower,” is uniformly open-minded and upbeat.  Its opening section ends with a quote from Monash University Professor of Physics and Chemistry Doug MacFarlane; “’Liquid ammonia is liquid energy,’ he says. ‘It's the sustainable technology we need.’” MacFarlane helped launch the Australian chapter of the NH3 Fuel Association.

On the Ground in Japan: 5th Basic Energy Plan, LH2 Investment
Article

Japan, widely recognized as a global leader in the development and implementation of ammonia energy, is a fascinating case study for advocates seeking a template for progress.  But, as Ammonia Energy has documented in numerous posts over the last two years, even in Japan the path is neither linear, smooth, nor preordained.  Two recent developments, one in the public sector and one in the private, illustrate anew the complexity of the evolutionary track the country is negotiating as it strives to create a sustainable energy economy.

International Chamber of Shipping endorses
Article

The International Chamber of Shipping has published a short but powerful report to "endorse" the International Maritime Organization's Initial Strategy on Reduction of GHG Emissions from Ships, adopted in April 2018. The ICS report calls the IMO's Initial GHG Strategy "a historic agreement which the global industry, as represented by ICS, fully supports," and discusses four fuel technologies that could deliver the IMO's targets: batteries, hydrogen, ammonia, and nuclear. The ICS report also demonstrates four realities, which apply, perhaps uniquely, to the maritime sector. First, corporations are driving change, in advance of government legislation. Second, these corporations are looking for more than incremental reductions in emissions and instead targeting total sectoral decarbonization with the ambition "to achieve zero CO2 emissions as soon as the development of new fuels and propulsion systems will allow." Third, they realize that LNG and other low-carbon fuels cannot meet these targets: "the ultimate goal of zero emissions can only be delivered with genuine zero CO2 fuels that are both environmentally sustainable and economically viable." Fourth, they recognize that, because ships are long-lived assets, the need to invest in zero CO2 fuel technologies is urgent and immediate.