Site items in: Ammonia Synthesis

Whither Aqueous Electro-reduction of Nitrogen to Ammonia?
Presentation

Electrochemical reduction of N 2 (NRR) is widely recognised as an alternative to the traditional Haber-Bosch production process for ammonia. The high-energy efficiency, low-cost variant of this process involves an aqueous electrolyte and there is now a substantial literature on this topic. However, though the challenges of NRR experiments have become better understood, the reported rates in these aqueous solution studies are often too low to be convincing that reduction of the highly unreactive N 2 molecule has actually been achieved. Unfortunately, there are many possible impurity sources that can interfere with robust measurements. In this presentation we will discuss…

Monash team publishes Ammonia Economy Roadmap
Article

Earlier this month, Doug MacFarlane and his team of researchers at Monash University published A Roadmap to the Ammonia Economy in the journal Joule. The paper charts an evolution of ammonia synthesis “through multiple generations of technology development and scale-up.” It provides a clear assessment of “the increasingly diverse range of applications of ammonia as a fuel that is emerging,” and concludes with perspectives on the “broader scale sustainability of an ammonia economy,” with emphasis on the Nitrogen Cycle. The Roadmap is brilliant in its simple distillation of complex and competing technology developments across decades. It assesses the sustainability and scalability of three generations of ammonia synthesis technologies. Put simply, Gen1 is blue ammonia, Gen2 is green ammonia, and Gen3 is electrochemical ammonia. It also outlines the amount of research and development required before each could be broadly adopted (“commercial readiness”). The paper thus provides vital clarity on the role that each generation of technology could play in the energy transition, and the timing at which it could make its impact.

ARPA-E Issues RFI for Next-Gen Ammonia System Integration
Article

This week the United States Department of Energy’s Advanced Research Projects Agency – Energy (ARPA-E) issued a Request for Information under the title “Next Generation Ammonia System Integration Project.” This is a strong signal that ARPA-E intends to see the ammonia energy technologies in its portfolio through to commercial fruition.

Small-Scale Ammonia Synthesis Technology on Track for 2021
Article

On October 6, 2019, the Nihon Keizai Shimbun published an article that confirmed a goal set at the 2017 launch of Japanese chemical technology developer Tsubame BHB. The goal is to have Tsubame’s ammonia synthesis technology ready for licensing in 2021. According to Tsubame’s English-language Web site, its technology “makes it possible to produce ammonia even at small-scale plants” – good news for ammonia energy project developers interested in distributed production concepts.

Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles
Presentation

Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars–van Krevelen mechanism. Ex situ and operando characterizations indicate that VN0.7O0.45 is the active phase for ENRR and the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. Quantitative isotopic labeling results identify the amounts of two different types of…

Synthesis and Assessment of Process Systems for Production of Ammonia Using Nitric Oxide in Combustion Exhaust Gas
Presentation

Recently, ammonia is regarded as an alternative fuel without carbon dioxide (CO2). Numerous studies have been performed using ammonia as a fuel. Iki and Kurata confirmed the working of a prototype for the ammonia gas turbine, where ammonia burned in an environmentally benign way to generate electricity, exhausting only water and nitrogen [1]. From the view of cycle of ammonia for the development of a society with low carbon, it is required to synthesize carbon-free ammonia (green ammonia) in small plants. This green ammonia can be synthesized using renewable energy, with hydrogen from electrolysis of water and nitrogen from pressure…

Ammonia Yields during Plasma-Assisted Catalysis Boosted By Hydrogen Sink Effect
Presentation

Plasma-catalytic ammonia synthesis is known since early 1900s but the possible reaction pathways are currently under investigation. In this article, we present the use of various transition metals and gallium-rich alloys for plasma-catalytic ammonia synthesis. The best three metallic catalysts were identified to be Ni, Sn and Au with the highest ammonia yield of 34%. Furthermore, as compared to its constituent metals some alloys presented about 25-50% better yields. The metals employed were classified in two different categories according to their behavior during ammonia plasma-catalysis. Category I metals are nitrophobic and the measured concentration of Hα in the gas phase…

Effect of Preparation Condition on Ammonia Synthesis over Ru/CeO
Presentation

Development of the hydrogen carrier system is of great interest to utilization of renewable energy. To store renewable energy, especially for the electricity from photovoltaic and wind turbine, fluctuation of the generated electricity is not appropriate for the stable supply of the electric power. Also, the hydrogen production by the water electrolysis with the fluctuating electricity results in the fluctuation of hydrogen production. When we store the hydrogen derived from renewable energy in the carrier compounds, it is necessary to consider the reduction or smoothing of fluctuation in the hydrogen flow rate as a feed of chemical process. Although the…

An Integrated Evaluation Method with Application to a New Ammonia Synthesis Process Design
Presentation

While keeping the traditional centralized large-scale chemical production, the increasing market volatility and the rising use of renewable resources will require new production ways such as distributed, modularized, and small-scale production. The new emerging processes are expected to provide more flexibility, shorter time to market, and better use of distributed renewable raw materials (e.g. biomass) and energy (e.g. solar and wind). However, the traditional process evaluation methods such as TEA (Techno-Economic Analysis) tend to lower the value of the new processes since the small-scale would make higher capital cost and lower operation efficiency. Therefore, a new evaluation method is required…