Site items in: Distributed ammonia synthesis

Arpa-E Refuel Program: Distributed Production of Ammonia and Its Conversion to Energy
Presentation

Ammonia, which has high energy density in easily produced liquid form and can be converted to electric or motive power, is considered to be an almost ideal non-carbon energy vector in addition to its common use as a fertilizer. It can be manufactured anywhere using the Haber-Bosch process, effectively stored, transported and used in combustion engines and fuel cells as well as a hydrogen carrier. Transition from fossil fuels as the energy source and feedstock to intermittent renewable energy sources will require a shift from large scale Haber-Bosch plants (1,000 – 1,500 t/day) to distributed ammonia production matching electrical power…

Optimizing Absorptive Separation for Intensification of Ammonia Production
Presentation

High pressure requirements of Haber-Bosch process imposes substantial operating (e.g., compression) and capital (compressor cost, advanced costly alloys, thick reactor casing, etc.) expenses in the ammonia production. Cost considerations force ammonia producers to take advantage of the economy of scale to drive down the manufacture cost, while small and energy-efficient processes that can be powered with off-grid renewable energy are required for ammonia-mediated hydrogen economy. Small-scale reaction-absorption process is proposed to be a viable technology to reduce the operating pressure requirements of Haber-Bosch process.1–4 Here, we present an overview of our efforts to further intensify ammonia production via reaction-absorption process.…

Technoeconomic Requirements for Sustainable Ammonia Production
Presentation

Ammonia, the feedstock for all nitrogen fertilizers, is produced via the Haber-Bosch process, which is responsible for 1-2% of global carbon dioxide emissions each year. An attractive solution to this problem is to create an electrochemical ammonia synthesis process that can produce ammonia using only air, water, and renewable electricity. Researchers across the world have been working toward such a solution for the last several decades, but so far, no economically viable alternative has been created. The Haber-Bosch process is one of the largest-scale, most highly optimized chemical processes in the world; it is very difficult to find a cheaper…

From Micro to Mega, how the green ammonia concept adapts
Presentation

Green ammonia concepts from thyssenkrupp are available from 50 to over 5000 tonnes per day. Variability of electrolytic hydrogen feed presents one of the biggest and unique challenge in achieving an optimal and stable functioning of the Haber-Bosch synthesis loop. The solutions to these challenges require a customised approach, dependent on scale and power generation mix of the of the facility. At thyssenkrupp, Australia, we offer local expertise in optimising the concepts for your small and large scale green ammonia applications, underpinned by our know how as a world leading electrolysis and ammonia technology supplier.

RAPID: supporting modular manufacturing and process intensification for small-scale ammonia
Article

Using greener feedstocks at low pressures and temperatures, with higher conversion rates and less greenhouse gases is considered a pipe dream. The technology and equipment simply wasn’t available ... until now. The case for small-scale, energy efficient ammonia production is well documented, but access to funds may not be. Now, Manufacturing USA and the Manufacturing Extension Partnership may offer a new path to success.

Design Optimization of an Ammonia-Based Distributed Sustainable Agricultural Energy System
Presentation

Small-scale, distributed production of ammonia better enables the use of renewable energy for its synthesis than the current paradigm of large-scale, centralized production. Pursuant to this idea, a small-scale Haber-Bosch process has been installed at the West Central Research and Outreach Center (WCROC) in Morris, MN [1] and there is ongoing work on an absorbent-enhanced process at the University of Minnesota [2], [3]. Using renewables to make ammonia would greatly improve the sustainability of fertilizer production, which currently accounts for 1% of total global energy consumption [4]. The promise of renewable-powered, distributed ammonia production for sustainability is in fact not…

Advances in Making High Purity Nitrogen for Small Scale Ammonia Generation
Presentation

The presentation will address recent developments in the Solar Hydrogen Demonstration Project in which hydrogen, nitrogen and ammonia are made from solar power, water, and air; and used to fuel a modified John Deere farm tractor. In industrial applications very pure nitrogen is made by cryogenic distillation of air. Using Pressure Swing Absorption systems alone it is extremely difficult to achieve the required purity. An improved method was developed for making high purity nitrogen, for smaller systems. Will discuss how, when Oxygen contaminates the reactor catalyst, Hydrogen is used to purge the catalyst, and subsequently used as fuel.

Scale up and Scale Down Issues of Renewable Ammonia Plants: Towards Modular Design
Presentation

Renewable sources of energy such as biomass, solar, wind or geothermal just to mention some of the most widely extended are characterized by a highly distributed production across regions (EPA, 2017). Total renewable energy available is more than enough to provide for society needs, but the traditional production paradigm is changing. Economies of scale have featured current industry and its infrastructures based on large production complexes (i.e Dow, Exxonmobil or BASF hubs). The well-known six tenths rule has extensively been used in the chemical industry to scale up or down the cost of technologies. This rule is suitable for large…

Small-scale ammonia production is the next big thing
Article

Over the last few years, world-scale ammonia plants have been built, restarted, and relocated across the US. The last of these mega-projects began operations at Freeport in Texas last month. No more new ammonia plants are currently under construction in the US, and the received industry wisdom is that no more will begin construction. However, project developers and ammonia start-ups did not get this memo. With low natural gas prices persisting, they have not stopped announcing plans to build new plants. The difference is that the next tranche of new ammonia plants breaking ground will not be world-scale but regional-scale, with production capacities of perhaps only one tenth the industry standard. Despite using fossil feedstocks, these plants will set new efficiency and emissions standards for small-scale ammonia plants, and demonstrate novel business models that will profoundly alter the future industry landscape for sustainable ammonia technologies.